一种基于动态规划的4D心脏超声半自动心内膜边界检测方法

M. van Stralen, M. Voormolen, G. van Burken, B. Krenning, R. V. van Geuns, E. Angelié, R. J. van der Geest, C. Lancée, N. de Jong, A. V. D. van der Steen, J. Reiber, J. Bosch
{"title":"一种基于动态规划的4D心脏超声半自动心内膜边界检测方法","authors":"M. van Stralen, M. Voormolen, G. van Burken, B. Krenning, R. V. van Geuns, E. Angelié, R. J. van der Geest, C. Lancée, N. de Jong, A. V. D. van der Steen, J. Reiber, J. Bosch","doi":"10.1109/ULTSYM.2005.1603072","DOIUrl":null,"url":null,"abstract":"We propose a semi-automatic endocardial border detection method for left ventricular volume estimation in 3D time series of cardiac ultrasound data. We evaluated on data acquired with the Fast Rotating Ultrasound (FRU) transducer: a linear phased array transducer rotated at high speed around its image axis, generating high quality 2D images of the heart. From four manually drawn contours a 3D + time shape and edge pattern model is derived from which contour shape and edge patterns are estimated for each image using the models. Pattern matching and dynamic programming is applied to detect the contours automatically. The method allows easy corrections in the detected 2D contours, to iteratively achieve more accurate models and improved detections. An evaluation of this method on FRU data against MRI was done for full cycle LV volumes on 10 patients. Good correlations were found against MRI volumes (r=0.94, y=0.73x + 30.3, difference of 9.6 +/- 17.4 ml (Av +/- SD)) and a low interobserver variability for US (r=0.94, y=1.11x - 16.8, difference of 1.4 +/- 14.2 ml). On average only 2.8 corrections per patient were needed (in a total of 160 images). Although the method shows good correlations with MRI without corrections, applying these corrections can make considerable improvements. Keywords-component; 3-dimensional ultrasound; left ventricle;","PeriodicalId":302030,"journal":{"name":"IEEE Ultrasonics Symposium, 2005.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel dynamic programming based semi-automatic endocardial border detection method for 4D cardiac ultrasound\",\"authors\":\"M. van Stralen, M. Voormolen, G. van Burken, B. Krenning, R. V. van Geuns, E. Angelié, R. J. van der Geest, C. Lancée, N. de Jong, A. V. D. van der Steen, J. Reiber, J. Bosch\",\"doi\":\"10.1109/ULTSYM.2005.1603072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a semi-automatic endocardial border detection method for left ventricular volume estimation in 3D time series of cardiac ultrasound data. We evaluated on data acquired with the Fast Rotating Ultrasound (FRU) transducer: a linear phased array transducer rotated at high speed around its image axis, generating high quality 2D images of the heart. From four manually drawn contours a 3D + time shape and edge pattern model is derived from which contour shape and edge patterns are estimated for each image using the models. Pattern matching and dynamic programming is applied to detect the contours automatically. The method allows easy corrections in the detected 2D contours, to iteratively achieve more accurate models and improved detections. An evaluation of this method on FRU data against MRI was done for full cycle LV volumes on 10 patients. Good correlations were found against MRI volumes (r=0.94, y=0.73x + 30.3, difference of 9.6 +/- 17.4 ml (Av +/- SD)) and a low interobserver variability for US (r=0.94, y=1.11x - 16.8, difference of 1.4 +/- 14.2 ml). On average only 2.8 corrections per patient were needed (in a total of 160 images). Although the method shows good correlations with MRI without corrections, applying these corrections can make considerable improvements. Keywords-component; 3-dimensional ultrasound; left ventricle;\",\"PeriodicalId\":302030,\"journal\":{\"name\":\"IEEE Ultrasonics Symposium, 2005.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Ultrasonics Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2005.1603072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Ultrasonics Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2005.1603072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种半自动心内膜边界检测方法,用于在三维时间序列心脏超声数据中估计左心室容积。我们对快速旋转超声(FRU)换能器获得的数据进行了评估:线性相控阵换能器绕其图像轴高速旋转,生成高质量的心脏二维图像。从四个手工绘制的轮廓中导出三维+时间形状和边缘模式模型,使用该模型估计每个图像的轮廓形状和边缘模式。采用模式匹配与动态规划相结合的方法实现了轮廓的自动检测。该方法可以在检测到的二维轮廓中轻松修正,迭代地实现更精确的模型和改进的检测。对10例患者的全周期左室容积进行了FRU数据与MRI对比的评估。与MRI体积之间存在良好的相关性(r=0.94, y=0.73x + 30.3,差异为9.6 +/- 17.4 ml (Av +/- SD)),而US的观察者间变异性较低(r=0.94, y=1.11x - 16.8,差异为1.4 +/- 14.2 ml)。平均每位患者只需要2.8次矫正(总共160张图像)。虽然该方法显示出与不校正的MRI良好的相关性,但应用这些校正可以取得相当大的改进。Keywords-component;三维超声;左心室;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel dynamic programming based semi-automatic endocardial border detection method for 4D cardiac ultrasound
We propose a semi-automatic endocardial border detection method for left ventricular volume estimation in 3D time series of cardiac ultrasound data. We evaluated on data acquired with the Fast Rotating Ultrasound (FRU) transducer: a linear phased array transducer rotated at high speed around its image axis, generating high quality 2D images of the heart. From four manually drawn contours a 3D + time shape and edge pattern model is derived from which contour shape and edge patterns are estimated for each image using the models. Pattern matching and dynamic programming is applied to detect the contours automatically. The method allows easy corrections in the detected 2D contours, to iteratively achieve more accurate models and improved detections. An evaluation of this method on FRU data against MRI was done for full cycle LV volumes on 10 patients. Good correlations were found against MRI volumes (r=0.94, y=0.73x + 30.3, difference of 9.6 +/- 17.4 ml (Av +/- SD)) and a low interobserver variability for US (r=0.94, y=1.11x - 16.8, difference of 1.4 +/- 14.2 ml). On average only 2.8 corrections per patient were needed (in a total of 160 images). Although the method shows good correlations with MRI without corrections, applying these corrections can make considerable improvements. Keywords-component; 3-dimensional ultrasound; left ventricle;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信