微软Kinect的计算机视觉控制功能电刺激:抓取意图的人工神经网络分类

Matija Štrbac, D. Popović
{"title":"微软Kinect的计算机视觉控制功能电刺激:抓取意图的人工神经网络分类","authors":"Matija Štrbac, D. Popović","doi":"10.1109/NEUREL.2014.7011491","DOIUrl":null,"url":null,"abstract":"We present a method for recognizing intended grasp type based on data from the Microsoft Kinect. A computer vision algorithm estimates the vertical and the transversal distance of the hand from the center of the object and the hand orientation from the Kinect depth images. Based on this set of features in the reaching phase of grasp artificial neural network recognizes the intended grasp type. This is demonstrated with an example of a coffee cup on a working desk. Trained neural network classified the grasp with accuracy above 85%. By adding this feature to the existing computer vision system for control of the functional electrical stimulation assisted grasping we facilitate the compliance between the applied electrical stimulation and the user intentions.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computer vision with Microsoft Kinect for control of functional electrical stimulation: ANN classification of the grasping intentions\",\"authors\":\"Matija Štrbac, D. Popović\",\"doi\":\"10.1109/NEUREL.2014.7011491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for recognizing intended grasp type based on data from the Microsoft Kinect. A computer vision algorithm estimates the vertical and the transversal distance of the hand from the center of the object and the hand orientation from the Kinect depth images. Based on this set of features in the reaching phase of grasp artificial neural network recognizes the intended grasp type. This is demonstrated with an example of a coffee cup on a working desk. Trained neural network classified the grasp with accuracy above 85%. By adding this feature to the existing computer vision system for control of the functional electrical stimulation assisted grasping we facilitate the compliance between the applied electrical stimulation and the user intentions.\",\"PeriodicalId\":402208,\"journal\":{\"name\":\"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2014.7011491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种基于微软Kinect数据识别意图抓取类型的方法。计算机视觉算法估计手与物体中心的垂直和横向距离,以及来自Kinect深度图像的手方向。基于这组抓取到达阶段的特征,人工神经网络识别目标抓取类型。这是用一个咖啡杯放在工作桌上的例子来说明的。训练后的神经网络对抓取进行分类,准确率在85%以上。通过将此功能添加到现有的计算机视觉系统中以控制功能性电刺激辅助抓取,我们促进了应用电刺激与用户意图之间的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer vision with Microsoft Kinect for control of functional electrical stimulation: ANN classification of the grasping intentions
We present a method for recognizing intended grasp type based on data from the Microsoft Kinect. A computer vision algorithm estimates the vertical and the transversal distance of the hand from the center of the object and the hand orientation from the Kinect depth images. Based on this set of features in the reaching phase of grasp artificial neural network recognizes the intended grasp type. This is demonstrated with an example of a coffee cup on a working desk. Trained neural network classified the grasp with accuracy above 85%. By adding this feature to the existing computer vision system for control of the functional electrical stimulation assisted grasping we facilitate the compliance between the applied electrical stimulation and the user intentions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信