使用特征映射变换的单目3D目标检测:朝向学习透视不变的场景表示

Enrico Schröder, Mirko Mählisch, Julien Vitay, F. Hamker
{"title":"使用特征映射变换的单目3D目标检测:朝向学习透视不变的场景表示","authors":"Enrico Schröder, Mirko Mählisch, Julien Vitay, F. Hamker","doi":"10.1109/IRC.2020.00066","DOIUrl":null,"url":null,"abstract":"In this paper we propose to use a feature map transformation network for the task of monocular 3D object detection. Given a monocular camera image, the transformation network encodes features of the scene in an abstract, perspective-invariant latent representation. This latent representation can then be decoded into a bird's-eye view representation to estimate objects' position and rotation in 3D space. In our experiments on the Kitti object detection dataset we show that our model is able to learn to estimate objects' 3D position from a monocular camera image alone without having any explicit geometric model or other prior information on how to perform the transformation. While performing slightly worse than networks which are purpose-built for this task, our approach allows feeding the same bird's-eye view object detection network with input data from different sensor modalities. This can increase redundancy in a safety-critical environment. We present additional experiments to gain insight into the properties of the learned perspective-invariant abstract scene representation.","PeriodicalId":232817,"journal":{"name":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monocular 3D Object Detection Using Feature Map Transformation: Towards Learning Perspective-Invariant Scene Representations\",\"authors\":\"Enrico Schröder, Mirko Mählisch, Julien Vitay, F. Hamker\",\"doi\":\"10.1109/IRC.2020.00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose to use a feature map transformation network for the task of monocular 3D object detection. Given a monocular camera image, the transformation network encodes features of the scene in an abstract, perspective-invariant latent representation. This latent representation can then be decoded into a bird's-eye view representation to estimate objects' position and rotation in 3D space. In our experiments on the Kitti object detection dataset we show that our model is able to learn to estimate objects' 3D position from a monocular camera image alone without having any explicit geometric model or other prior information on how to perform the transformation. While performing slightly worse than networks which are purpose-built for this task, our approach allows feeding the same bird's-eye view object detection network with input data from different sensor modalities. This can increase redundancy in a safety-critical environment. We present additional experiments to gain insight into the properties of the learned perspective-invariant abstract scene representation.\",\"PeriodicalId\":232817,\"journal\":{\"name\":\"2020 Fourth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Fourth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2020.00066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2020.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于特征映射变换网络的单目三维目标检测方法。给定单目相机图像,变换网络以抽象的、透视不变的潜在表示对场景特征进行编码。然后,这种潜在的表示可以解码为鸟瞰表示,以估计物体在3D空间中的位置和旋转。在我们对Kitti对象检测数据集的实验中,我们表明我们的模型能够在没有任何明确的几何模型或其他关于如何执行转换的先验信息的情况下,仅从单目相机图像中学习估计对象的3D位置。虽然性能略差于专门为此任务构建的网络,但我们的方法允许为相同的鸟瞰目标检测网络提供来自不同传感器模式的输入数据。这可以在安全关键型环境中增加冗余。我们提出了额外的实验来深入了解学习到的透视不变抽象场景表示的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monocular 3D Object Detection Using Feature Map Transformation: Towards Learning Perspective-Invariant Scene Representations
In this paper we propose to use a feature map transformation network for the task of monocular 3D object detection. Given a monocular camera image, the transformation network encodes features of the scene in an abstract, perspective-invariant latent representation. This latent representation can then be decoded into a bird's-eye view representation to estimate objects' position and rotation in 3D space. In our experiments on the Kitti object detection dataset we show that our model is able to learn to estimate objects' 3D position from a monocular camera image alone without having any explicit geometric model or other prior information on how to perform the transformation. While performing slightly worse than networks which are purpose-built for this task, our approach allows feeding the same bird's-eye view object detection network with input data from different sensor modalities. This can increase redundancy in a safety-critical environment. We present additional experiments to gain insight into the properties of the learned perspective-invariant abstract scene representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信