基于视觉目标检测算法和卡尔曼滤波的协同机器人系统中人的位置和速度估计

Jiwoong Lim, S. Rhim
{"title":"基于视觉目标检测算法和卡尔曼滤波的协同机器人系统中人的位置和速度估计","authors":"Jiwoong Lim, S. Rhim","doi":"10.1109/UR49135.2020.9144888","DOIUrl":null,"url":null,"abstract":"Safety issues are increasing as collaborative robots and people share workspaces. In this paper, we propose a technique for estimating a single human position and velocity using two fixed RGB cameras. To detect human, an object detection algorithm composed of convolution neural network is used. The detection area in images obtained from the detection algorithm are used to calculate the human position in the experimental environment with some partial visual obstruction through coordinate transformation. Then we use Kalman filter to estimate the filtered position and velocity. Finally, we suggest how to predict the position and velocity when human is blocked from the cameras due to obstacles.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of Human Position and Velocity in Collaborative Robot System Using Visual Object Detection Algorithm and Kalman Filter\",\"authors\":\"Jiwoong Lim, S. Rhim\",\"doi\":\"10.1109/UR49135.2020.9144888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety issues are increasing as collaborative robots and people share workspaces. In this paper, we propose a technique for estimating a single human position and velocity using two fixed RGB cameras. To detect human, an object detection algorithm composed of convolution neural network is used. The detection area in images obtained from the detection algorithm are used to calculate the human position in the experimental environment with some partial visual obstruction through coordinate transformation. Then we use Kalman filter to estimate the filtered position and velocity. Finally, we suggest how to predict the position and velocity when human is blocked from the cameras due to obstacles.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着协作机器人和人类共享工作空间,安全问题日益严重。在本文中,我们提出了一种使用两个固定RGB相机估计单个人的位置和速度的技术。为了检测人体,采用了一种由卷积神经网络组成的目标检测算法。利用检测算法得到的图像中的检测区域,通过坐标变换计算出实验环境中存在部分视觉障碍的人体位置。然后用卡尔曼滤波估计滤波后的位置和速度。最后,我们提出了如何预测人体因障碍物而无法进入摄像机时的位置和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Human Position and Velocity in Collaborative Robot System Using Visual Object Detection Algorithm and Kalman Filter
Safety issues are increasing as collaborative robots and people share workspaces. In this paper, we propose a technique for estimating a single human position and velocity using two fixed RGB cameras. To detect human, an object detection algorithm composed of convolution neural network is used. The detection area in images obtained from the detection algorithm are used to calculate the human position in the experimental environment with some partial visual obstruction through coordinate transformation. Then we use Kalman filter to estimate the filtered position and velocity. Finally, we suggest how to predict the position and velocity when human is blocked from the cameras due to obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信