{"title":"一种具有正向衬底偏置的低温工作CMOS结构","authors":"T. Yamamoto, T. Mogami, K. Terada","doi":"10.1109/VLSIT.1992.200670","DOIUrl":null,"url":null,"abstract":"A CMOS structure with a local well contact that allows the application of forward substrate bias for both p- and n-well with a single substrate supply is described. Higher driving capability and smaller short channel effects can be realized without device area increase. A propagation delay of 95 ps/stage at V/sub dd/=1.5 V and a temperature of 77 K was obtained with a 0.4- mu m gate length, which is about 1.5 times faster than that of the conventional CMOS structure.<<ETX>>","PeriodicalId":404756,"journal":{"name":"1992 Symposium on VLSI Technology Digest of Technical Papers","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new CMOS structure for low temperature operation with forward substrate bias\",\"authors\":\"T. Yamamoto, T. Mogami, K. Terada\",\"doi\":\"10.1109/VLSIT.1992.200670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A CMOS structure with a local well contact that allows the application of forward substrate bias for both p- and n-well with a single substrate supply is described. Higher driving capability and smaller short channel effects can be realized without device area increase. A propagation delay of 95 ps/stage at V/sub dd/=1.5 V and a temperature of 77 K was obtained with a 0.4- mu m gate length, which is about 1.5 times faster than that of the conventional CMOS structure.<<ETX>>\",\"PeriodicalId\":404756,\"journal\":{\"name\":\"1992 Symposium on VLSI Technology Digest of Technical Papers\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 Symposium on VLSI Technology Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.1992.200670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 Symposium on VLSI Technology Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.1992.200670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new CMOS structure for low temperature operation with forward substrate bias
A CMOS structure with a local well contact that allows the application of forward substrate bias for both p- and n-well with a single substrate supply is described. Higher driving capability and smaller short channel effects can be realized without device area increase. A propagation delay of 95 ps/stage at V/sub dd/=1.5 V and a temperature of 77 K was obtained with a 0.4- mu m gate length, which is about 1.5 times faster than that of the conventional CMOS structure.<>