考虑材料塑性的罐车锅炉安全弧击穿模拟

A. Surnin, S. Bespal'ko
{"title":"考虑材料塑性的罐车锅炉安全弧击穿模拟","authors":"A. Surnin, S. Bespal'ko","doi":"10.30987/2782-5957-2023-8-26-34","DOIUrl":null,"url":null,"abstract":"The study objective is to simulate the breakdown of a tank car boiler by safety arc, taking into account the material plasticity. In accordance with this, it is necessary to solve the following tasks: to develop a methodology for calculating the stress-strain state of the boiler under shock load in a nonlinear situation, to select rational geometric characteristics of the armor plate and its thickness. To achieve them, the theory of elasticity and plasticity and the finite element method are used. \nThe novelty of the work is in the development of a methodology for finding out the stress-strain state of a tank car boiler under shock loading conditions, taking into account the plasticity of the material. The study results are the dependences of the strain energy and stresses on the impact velocity, stress fields, a sample of rational geometrics and thickness of the armor plate. \nDuring the study, a number of calculations were carried out to determine the strength characteristics of the boiler with different configurations of the armor plate. Based on the data obtained, the best options were selected and used to obtain a qualitative picture of the problem being solved.","PeriodicalId":289189,"journal":{"name":"Transport engineering","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIMULATION OF THE BREAKDOWN OF A TANK CAR BOILER BY SAFETY ARCS TAKING INTO ACCOUNT MATERIAL PLASTICITY\",\"authors\":\"A. Surnin, S. Bespal'ko\",\"doi\":\"10.30987/2782-5957-2023-8-26-34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study objective is to simulate the breakdown of a tank car boiler by safety arc, taking into account the material plasticity. In accordance with this, it is necessary to solve the following tasks: to develop a methodology for calculating the stress-strain state of the boiler under shock load in a nonlinear situation, to select rational geometric characteristics of the armor plate and its thickness. To achieve them, the theory of elasticity and plasticity and the finite element method are used. \\nThe novelty of the work is in the development of a methodology for finding out the stress-strain state of a tank car boiler under shock loading conditions, taking into account the plasticity of the material. The study results are the dependences of the strain energy and stresses on the impact velocity, stress fields, a sample of rational geometrics and thickness of the armor plate. \\nDuring the study, a number of calculations were carried out to determine the strength characteristics of the boiler with different configurations of the armor plate. Based on the data obtained, the best options were selected and used to obtain a qualitative picture of the problem being solved.\",\"PeriodicalId\":289189,\"journal\":{\"name\":\"Transport engineering\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/2782-5957-2023-8-26-34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/2782-5957-2023-8-26-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究目的是在考虑材料塑性的情况下,模拟罐车锅炉的安全电弧击穿。为此,需要解决以下问题:建立非线性冲击载荷下锅炉应力-应变状态的计算方法,选择合理的护板几何特性及其厚度。为此,采用了弹塑性理论和有限元方法。这项工作的新颖之处在于开发了一种方法,用于在考虑材料塑性的情况下找出冲击载荷条件下罐车锅炉的应力-应变状态。研究结果是应变能和应力与冲击速度、应力场、合理几何形状和装甲板厚度的关系。在研究过程中,进行了大量的计算,以确定不同护板配置下锅炉的强度特性。根据获得的数据,选择最佳选项并用于获得待解决问题的定性图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SIMULATION OF THE BREAKDOWN OF A TANK CAR BOILER BY SAFETY ARCS TAKING INTO ACCOUNT MATERIAL PLASTICITY
The study objective is to simulate the breakdown of a tank car boiler by safety arc, taking into account the material plasticity. In accordance with this, it is necessary to solve the following tasks: to develop a methodology for calculating the stress-strain state of the boiler under shock load in a nonlinear situation, to select rational geometric characteristics of the armor plate and its thickness. To achieve them, the theory of elasticity and plasticity and the finite element method are used. The novelty of the work is in the development of a methodology for finding out the stress-strain state of a tank car boiler under shock loading conditions, taking into account the plasticity of the material. The study results are the dependences of the strain energy and stresses on the impact velocity, stress fields, a sample of rational geometrics and thickness of the armor plate. During the study, a number of calculations were carried out to determine the strength characteristics of the boiler with different configurations of the armor plate. Based on the data obtained, the best options were selected and used to obtain a qualitative picture of the problem being solved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信