{"title":"VERVE:一个具有电压岛的基于noc的mpsoc的变化感知节能合成框架","authors":"N. Kapadia, S. Pasricha","doi":"10.1109/ISQED.2013.6523673","DOIUrl":null,"url":null,"abstract":"With feature sizes far below the wavelength of light, variations in fabrication processes are becoming more common and can lead to unpredictable behavior in modern multiprocessor system-on-chip (MPSoC) designs. The design costs associated with margining required to overcome this unpredictability can be prohibitively high. System-level design approaches that are aware of these variations can be crucial for designing energy-efficient systems. We note that by performing voltage island placement appropriately, the two major unintended consequences of variations on the circuit characteristics (altered delay and power dissipation) can be traded-off, in order to minimize overall system energy. To this end, we propose a novel design-time system-level synthesis framework that is cognizant of process variations while mapping cores operating at specific supply voltages to a die and allocating communication routes on a 2D-mesh network-on-chip (NoC) topology for optimal energy-efficiency. Our experiments with real-world and synthetic application benchmarks show that our framework achieves 3.4% savings in computation energy and 19% savings in communication energy compared to the best known prior work on NoC-based MPSoC synthesis that considers process variations.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"VERVE: A framework for variation-aware energy efficient synthesis of NoC-based MPSoCs with voltage islands\",\"authors\":\"N. Kapadia, S. Pasricha\",\"doi\":\"10.1109/ISQED.2013.6523673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With feature sizes far below the wavelength of light, variations in fabrication processes are becoming more common and can lead to unpredictable behavior in modern multiprocessor system-on-chip (MPSoC) designs. The design costs associated with margining required to overcome this unpredictability can be prohibitively high. System-level design approaches that are aware of these variations can be crucial for designing energy-efficient systems. We note that by performing voltage island placement appropriately, the two major unintended consequences of variations on the circuit characteristics (altered delay and power dissipation) can be traded-off, in order to minimize overall system energy. To this end, we propose a novel design-time system-level synthesis framework that is cognizant of process variations while mapping cores operating at specific supply voltages to a die and allocating communication routes on a 2D-mesh network-on-chip (NoC) topology for optimal energy-efficiency. Our experiments with real-world and synthetic application benchmarks show that our framework achieves 3.4% savings in computation energy and 19% savings in communication energy compared to the best known prior work on NoC-based MPSoC synthesis that considers process variations.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VERVE: A framework for variation-aware energy efficient synthesis of NoC-based MPSoCs with voltage islands
With feature sizes far below the wavelength of light, variations in fabrication processes are becoming more common and can lead to unpredictable behavior in modern multiprocessor system-on-chip (MPSoC) designs. The design costs associated with margining required to overcome this unpredictability can be prohibitively high. System-level design approaches that are aware of these variations can be crucial for designing energy-efficient systems. We note that by performing voltage island placement appropriately, the two major unintended consequences of variations on the circuit characteristics (altered delay and power dissipation) can be traded-off, in order to minimize overall system energy. To this end, we propose a novel design-time system-level synthesis framework that is cognizant of process variations while mapping cores operating at specific supply voltages to a die and allocating communication routes on a 2D-mesh network-on-chip (NoC) topology for optimal energy-efficiency. Our experiments with real-world and synthetic application benchmarks show that our framework achieves 3.4% savings in computation energy and 19% savings in communication energy compared to the best known prior work on NoC-based MPSoC synthesis that considers process variations.