{"title":"考虑声-结构相互作用的圆柱壳输送流体的有限元振动分析","authors":"W. Jeong, Y. Seo, Se-Jin Ahn, W. Yoo","doi":"10.1299/JSMEC.49.488","DOIUrl":null,"url":null,"abstract":"The dynamic behavior of the cylindrical shell with uniform flow is formulated by the finite element method. The dynamics of the shell is based on Donnell’s theory and the fluid in cylindrical shell is considered satisfying the Helmholtz equation. The effective thickness of fluid is calculated according to the circumferential modes and the frequencies. An estimation of the FRF (frequency response function) of the shell with taking into consideration of the coupled effects of the internal fluid is presented. These results are compared with the results considering fluid satisfying Laplace equation. The influence of fluid velocity on the FRF is also discussed.","PeriodicalId":151961,"journal":{"name":"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Finite Element Vibration Analysis of Cylindrical Shells Conveying Fluid with Considering Acoustic-Structure Interactions\",\"authors\":\"W. Jeong, Y. Seo, Se-Jin Ahn, W. Yoo\",\"doi\":\"10.1299/JSMEC.49.488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic behavior of the cylindrical shell with uniform flow is formulated by the finite element method. The dynamics of the shell is based on Donnell’s theory and the fluid in cylindrical shell is considered satisfying the Helmholtz equation. The effective thickness of fluid is calculated according to the circumferential modes and the frequencies. An estimation of the FRF (frequency response function) of the shell with taking into consideration of the coupled effects of the internal fluid is presented. These results are compared with the results considering fluid satisfying Laplace equation. The influence of fluid velocity on the FRF is also discussed.\",\"PeriodicalId\":151961,\"journal\":{\"name\":\"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEC.49.488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEC.49.488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Element Vibration Analysis of Cylindrical Shells Conveying Fluid with Considering Acoustic-Structure Interactions
The dynamic behavior of the cylindrical shell with uniform flow is formulated by the finite element method. The dynamics of the shell is based on Donnell’s theory and the fluid in cylindrical shell is considered satisfying the Helmholtz equation. The effective thickness of fluid is calculated according to the circumferential modes and the frequencies. An estimation of the FRF (frequency response function) of the shell with taking into consideration of the coupled effects of the internal fluid is presented. These results are compared with the results considering fluid satisfying Laplace equation. The influence of fluid velocity on the FRF is also discussed.