{"title":"宽条纹,高分辨率SAR使用多个接收孔径","authors":"N. Goodman, Devindran Rajakrishna, J. Stiles","doi":"10.1109/IGARSS.1999.772089","DOIUrl":null,"url":null,"abstract":"When one attempts to image a large area while maintaining high resolution, ambiguities often appear. This occurs when the number of pixels exceeds the number of measurements or when the area includes range-Doppler ambiguities. In fact, the number of independent samples obtained by a single-receiver SAR, and consequently the number of pixels that can be unambiguously imaged, is equal to the time-bandwidth product of the radar signal. It is shown that multiple receive apertures resolve this scenario by adding independent angle-of-arrival samples to the system. Because targets that are ambiguous in range and Doppler are not ambiguous in angle of arrival, an image with the same resolution as the single-aperture image, but with larger area, is unambiguously obtained. The authors present a multiple-aperture configuration, each with coherent receivers. The SAR image is calculated using three methods. The first is the traditional matched-filter method. The second is an orthogonal filter method. Last, a sidelobe cancellation filter is applied. The methods are applied after each aperture is range-Doppler processed. Therefore, the methods are used to resolve the ambiguities inherent in traditional range-Doppler processing.","PeriodicalId":169541,"journal":{"name":"IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Wide swath, high resolution SAR using multiple receive apertures\",\"authors\":\"N. Goodman, Devindran Rajakrishna, J. Stiles\",\"doi\":\"10.1109/IGARSS.1999.772089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When one attempts to image a large area while maintaining high resolution, ambiguities often appear. This occurs when the number of pixels exceeds the number of measurements or when the area includes range-Doppler ambiguities. In fact, the number of independent samples obtained by a single-receiver SAR, and consequently the number of pixels that can be unambiguously imaged, is equal to the time-bandwidth product of the radar signal. It is shown that multiple receive apertures resolve this scenario by adding independent angle-of-arrival samples to the system. Because targets that are ambiguous in range and Doppler are not ambiguous in angle of arrival, an image with the same resolution as the single-aperture image, but with larger area, is unambiguously obtained. The authors present a multiple-aperture configuration, each with coherent receivers. The SAR image is calculated using three methods. The first is the traditional matched-filter method. The second is an orthogonal filter method. Last, a sidelobe cancellation filter is applied. The methods are applied after each aperture is range-Doppler processed. Therefore, the methods are used to resolve the ambiguities inherent in traditional range-Doppler processing.\",\"PeriodicalId\":169541,\"journal\":{\"name\":\"IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.1999.772089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.1999.772089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wide swath, high resolution SAR using multiple receive apertures
When one attempts to image a large area while maintaining high resolution, ambiguities often appear. This occurs when the number of pixels exceeds the number of measurements or when the area includes range-Doppler ambiguities. In fact, the number of independent samples obtained by a single-receiver SAR, and consequently the number of pixels that can be unambiguously imaged, is equal to the time-bandwidth product of the radar signal. It is shown that multiple receive apertures resolve this scenario by adding independent angle-of-arrival samples to the system. Because targets that are ambiguous in range and Doppler are not ambiguous in angle of arrival, an image with the same resolution as the single-aperture image, but with larger area, is unambiguously obtained. The authors present a multiple-aperture configuration, each with coherent receivers. The SAR image is calculated using three methods. The first is the traditional matched-filter method. The second is an orthogonal filter method. Last, a sidelobe cancellation filter is applied. The methods are applied after each aperture is range-Doppler processed. Therefore, the methods are used to resolve the ambiguities inherent in traditional range-Doppler processing.