作物健康监测系统的多光谱图像分析

Amelia Sarah Binti Abdul Rahman, L. I. Izhar, P. Sebastian, Ratnasari Nur Rohmah
{"title":"作物健康监测系统的多光谱图像分析","authors":"Amelia Sarah Binti Abdul Rahman, L. I. Izhar, P. Sebastian, Ratnasari Nur Rohmah","doi":"10.1109/ROMA55875.2022.9915668","DOIUrl":null,"url":null,"abstract":"The goal of this research is to apply machine learning to classify healthy and unhealthy potato crops collected from UAV-based multispectral images, and to establish which spectral band provides the best separation for classification. Traditional detection and mapping approaches take time, involve a lot of human work, and are often subjective. The classification will use the Random Forest Classifier as the machine learning technique to classify based on two vegetation indices: the Normalized Difference Vegetation Index (NDVI) and the Red Edge Normalized Difference Vegetation Index (NDRE). The proposed method includes three primary components: (1) raw picture radiometric correction and orthomosaic combination; (2) dirt and weed removal using a thresholding method; and (3) classification and model training using Random Forest Classifier. The method’s performance is assessed using data from an experimental potato field published by the University of Idaho.","PeriodicalId":121458,"journal":{"name":"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multispectral Image Analysis for Crop Health Monitoring System\",\"authors\":\"Amelia Sarah Binti Abdul Rahman, L. I. Izhar, P. Sebastian, Ratnasari Nur Rohmah\",\"doi\":\"10.1109/ROMA55875.2022.9915668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this research is to apply machine learning to classify healthy and unhealthy potato crops collected from UAV-based multispectral images, and to establish which spectral band provides the best separation for classification. Traditional detection and mapping approaches take time, involve a lot of human work, and are often subjective. The classification will use the Random Forest Classifier as the machine learning technique to classify based on two vegetation indices: the Normalized Difference Vegetation Index (NDVI) and the Red Edge Normalized Difference Vegetation Index (NDRE). The proposed method includes three primary components: (1) raw picture radiometric correction and orthomosaic combination; (2) dirt and weed removal using a thresholding method; and (3) classification and model training using Random Forest Classifier. The method’s performance is assessed using data from an experimental potato field published by the University of Idaho.\",\"PeriodicalId\":121458,\"journal\":{\"name\":\"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMA55875.2022.9915668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMA55875.2022.9915668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是将机器学习应用于从无人机多光谱图像中采集的健康和不健康马铃薯作物进行分类,并确定哪个光谱波段提供最佳的分离进行分类。传统的检测和绘图方法需要时间,涉及大量的人力工作,而且往往是主观的。分类将使用随机森林分类器作为机器学习技术,基于两个植被指数进行分类:归一化植被指数(NDVI)和红边归一化植被指数(NDRE)。该方法包括三个主要部分:(1)原始图像辐射校正和正交组合;(2)采用阈值法去除污垢和杂草;(3)使用随机森林分类器进行分类和模型训练。该方法的性能是用爱达荷大学公布的一个试验马铃薯田的数据来评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multispectral Image Analysis for Crop Health Monitoring System
The goal of this research is to apply machine learning to classify healthy and unhealthy potato crops collected from UAV-based multispectral images, and to establish which spectral band provides the best separation for classification. Traditional detection and mapping approaches take time, involve a lot of human work, and are often subjective. The classification will use the Random Forest Classifier as the machine learning technique to classify based on two vegetation indices: the Normalized Difference Vegetation Index (NDVI) and the Red Edge Normalized Difference Vegetation Index (NDRE). The proposed method includes three primary components: (1) raw picture radiometric correction and orthomosaic combination; (2) dirt and weed removal using a thresholding method; and (3) classification and model training using Random Forest Classifier. The method’s performance is assessed using data from an experimental potato field published by the University of Idaho.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信