{"title":"多机器人系统的分布式三维TSDF流形映射","authors":"Thibaud Duhautbout, J. Moras, J. Marzat","doi":"10.1109/ECMR.2019.8870930","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to perform collaborative real-time dense 3D mapping in a distributed way for a multi-robot system. This method associates a Truncated Signed Distance Function (TSDF) representation with a manifold structure. Each robot owns a private map which is composed of a collection of local TSDF sub-maps called patches that are locally consistent. This private map can be shared to build a public map collecting all the patches created by the robots of the fleet. In order to maintain consistency in the global map, a mechanism of patch alignment and fusion has been added. This work has been integrated in real-time into a mapping stack, which can be used for autonomous navigation in unknown and cluttered environment. Experimental results on a team of wheeled mobile robots are reported to demonstrate the practical interest of the proposed system, in particular for the exploration of unknown areas.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Distributed 3D TSDF Manifold Mapping for Multi-Robot Systems\",\"authors\":\"Thibaud Duhautbout, J. Moras, J. Marzat\",\"doi\":\"10.1109/ECMR.2019.8870930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method to perform collaborative real-time dense 3D mapping in a distributed way for a multi-robot system. This method associates a Truncated Signed Distance Function (TSDF) representation with a manifold structure. Each robot owns a private map which is composed of a collection of local TSDF sub-maps called patches that are locally consistent. This private map can be shared to build a public map collecting all the patches created by the robots of the fleet. In order to maintain consistency in the global map, a mechanism of patch alignment and fusion has been added. This work has been integrated in real-time into a mapping stack, which can be used for autonomous navigation in unknown and cluttered environment. Experimental results on a team of wheeled mobile robots are reported to demonstrate the practical interest of the proposed system, in particular for the exploration of unknown areas.\",\"PeriodicalId\":435630,\"journal\":{\"name\":\"2019 European Conference on Mobile Robots (ECMR)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2019.8870930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed 3D TSDF Manifold Mapping for Multi-Robot Systems
This paper presents a new method to perform collaborative real-time dense 3D mapping in a distributed way for a multi-robot system. This method associates a Truncated Signed Distance Function (TSDF) representation with a manifold structure. Each robot owns a private map which is composed of a collection of local TSDF sub-maps called patches that are locally consistent. This private map can be shared to build a public map collecting all the patches created by the robots of the fleet. In order to maintain consistency in the global map, a mechanism of patch alignment and fusion has been added. This work has been integrated in real-time into a mapping stack, which can be used for autonomous navigation in unknown and cluttered environment. Experimental results on a team of wheeled mobile robots are reported to demonstrate the practical interest of the proposed system, in particular for the exploration of unknown areas.