用非线性微分函数推广经典的延迟和技术

H. Nieto-Chaupis
{"title":"用非线性微分函数推广经典的延迟和技术","authors":"H. Nieto-Chaupis","doi":"10.1109/INTERCON.2017.8079636","DOIUrl":null,"url":null,"abstract":"We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern $\\mathcal{B}(r)=\\sum\\nolimits_{k,q}w(k,q,r)x(k,q,r)$ with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved.","PeriodicalId":229086,"journal":{"name":"2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions\",\"authors\":\"H. Nieto-Chaupis\",\"doi\":\"10.1109/INTERCON.2017.8079636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern $\\\\mathcal{B}(r)=\\\\sum\\\\nolimits_{k,q}w(k,q,r)x(k,q,r)$ with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved.\",\"PeriodicalId\":229086,\"journal\":{\"name\":\"2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTERCON.2017.8079636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERCON.2017.8079636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于非线性参数的狄拉克- δ函数的延迟和波束形成的推广方法。为此,导出了波束方向图$\mathcal{B}(r)=\sum\nolimits_{k,q}w(k,q,r)x(k,q,r)$当r = r(θ)时的封闭表达式。该表达式通过包含整阶贝塞尔输入函数和随机噪声的算法进行计算模拟。采用类蒙特卡罗步骤提取Dirac-Delta方法提供的4M+N模型参数,该步骤选择B(r)的最佳值,使光束响应θ0=30度时蒙特卡罗误差最小化Δθ = 0.5%。这些结果可能支持这样一个事实,即波束形成技术可以使用狄拉克-三角洲函数来模拟到达信号,即使在那些涉及强非线性的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern $\mathcal{B}(r)=\sum\nolimits_{k,q}w(k,q,r)x(k,q,r)$ with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信