可扩展HEVC的自适应分层运动估计优化

Abdelrahman Abdelazim, A. Hamza
{"title":"可扩展HEVC的自适应分层运动估计优化","authors":"Abdelrahman Abdelazim, A. Hamza","doi":"10.1109/IEEEGCC.2015.7060088","DOIUrl":null,"url":null,"abstract":"The scalable extension of the HEVC Video Coding Standard (H.265) offers elaborate mechanisms for motion vector prediction and estimation. S-HEVC builds on the standard by extending predictor lists for Coding Unit blocks, utilizing base-layer information in the inference of enhancement-layer Coding Units. The complex, exhaustive search schemes in use can be aided by hierarchical optimizations in subpixel motion estimation, which we propose for slow-moving CUs per frame. In this paper we implement and test an adaptive optimization of motion estimation in the standard (SHM 6.1 software release), based on a statistical analysis of the behavior of subpixel motion vector differentials in each spatial mode per Coding Unit. We propose that the least granular mode (64×64 PEL macro-block in current release) contains sufficient information at subpixel levels to decide best-mode selection, i.e., whether a complete recursion through the inner partitions (higher granularity) is required in the estimation of a CU motion vector. We further propose that subpixel motion estimation overheads can be avoided below a set threshold, given conditions set in base and enhancement layer motion estimation for priorly computed modes in the same CU. Both optimization methods are tested across a diverse set of video sequences, producing negligible quality penalties at for a sizable reduction in encoding time.","PeriodicalId":127217,"journal":{"name":"2015 IEEE 8th GCC Conference & Exhibition","volume":"309 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive hierarchical motion estimation optimization for scalable HEVC\",\"authors\":\"Abdelrahman Abdelazim, A. Hamza\",\"doi\":\"10.1109/IEEEGCC.2015.7060088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scalable extension of the HEVC Video Coding Standard (H.265) offers elaborate mechanisms for motion vector prediction and estimation. S-HEVC builds on the standard by extending predictor lists for Coding Unit blocks, utilizing base-layer information in the inference of enhancement-layer Coding Units. The complex, exhaustive search schemes in use can be aided by hierarchical optimizations in subpixel motion estimation, which we propose for slow-moving CUs per frame. In this paper we implement and test an adaptive optimization of motion estimation in the standard (SHM 6.1 software release), based on a statistical analysis of the behavior of subpixel motion vector differentials in each spatial mode per Coding Unit. We propose that the least granular mode (64×64 PEL macro-block in current release) contains sufficient information at subpixel levels to decide best-mode selection, i.e., whether a complete recursion through the inner partitions (higher granularity) is required in the estimation of a CU motion vector. We further propose that subpixel motion estimation overheads can be avoided below a set threshold, given conditions set in base and enhancement layer motion estimation for priorly computed modes in the same CU. Both optimization methods are tested across a diverse set of video sequences, producing negligible quality penalties at for a sizable reduction in encoding time.\",\"PeriodicalId\":127217,\"journal\":{\"name\":\"2015 IEEE 8th GCC Conference & Exhibition\",\"volume\":\"309 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 8th GCC Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEEGCC.2015.7060088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 8th GCC Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2015.7060088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

HEVC视频编码标准(H.265)的可扩展扩展为运动矢量预测和估计提供了详细的机制。S-HEVC通过扩展编码单元块的预测器列表建立在标准之上,利用基础层信息来推断增强层编码单元。使用中的复杂的穷举搜索方案可以通过亚像素运动估计中的分层优化来辅助,我们提出了针对每帧缓慢移动的cu的分层优化。在本文中,我们基于对每个编码单元在每个空间模式下的亚像素运动矢量差分行为的统计分析,实现并测试了标准(SHM 6.1软件版本)中运动估计的自适应优化。我们建议最小粒度模式(64×64 PEL宏块)在亚像素级别包含足够的信息来决定最佳模式选择,即在估计CU运动矢量时是否需要通过内部分区(更高粒度)进行完整递归。我们进一步提出,对于同一CU中预先计算模式的基础层和增强层运动估计中设置的条件,可以避免亚像素运动估计开销低于设定的阈值。这两种优化方法都在不同的视频序列集上进行了测试,在编码时间大幅减少的情况下,产生的质量损失可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive hierarchical motion estimation optimization for scalable HEVC
The scalable extension of the HEVC Video Coding Standard (H.265) offers elaborate mechanisms for motion vector prediction and estimation. S-HEVC builds on the standard by extending predictor lists for Coding Unit blocks, utilizing base-layer information in the inference of enhancement-layer Coding Units. The complex, exhaustive search schemes in use can be aided by hierarchical optimizations in subpixel motion estimation, which we propose for slow-moving CUs per frame. In this paper we implement and test an adaptive optimization of motion estimation in the standard (SHM 6.1 software release), based on a statistical analysis of the behavior of subpixel motion vector differentials in each spatial mode per Coding Unit. We propose that the least granular mode (64×64 PEL macro-block in current release) contains sufficient information at subpixel levels to decide best-mode selection, i.e., whether a complete recursion through the inner partitions (higher granularity) is required in the estimation of a CU motion vector. We further propose that subpixel motion estimation overheads can be avoided below a set threshold, given conditions set in base and enhancement layer motion estimation for priorly computed modes in the same CU. Both optimization methods are tested across a diverse set of video sequences, producing negligible quality penalties at for a sizable reduction in encoding time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信