LVDC船载电力系统的建模与仿真:电压瞬态与标准LVDC解决方案的比较

D. Bosich, M. Gibescu, N. Remijn, I. Fazlagic, Jos de Regt
{"title":"LVDC船载电力系统的建模与仿真:电压瞬态与标准LVDC解决方案的比较","authors":"D. Bosich, M. Gibescu, N. Remijn, I. Fazlagic, Jos de Regt","doi":"10.1109/ESARS.2015.7101461","DOIUrl":null,"url":null,"abstract":"Voltage stability is a focal issue in every shipboard power system, where strict requirements (e.g. specified by STANAG 1008, classification rules, IEEE and IEC standards) are defined to guarantee safe operation under various operating conditions. This work proposes a low-voltage DC (LVDC) shipboard power system design and evaluates its voltage stability performance by comparing it with a standard low-voltage AC (LVAC) design. In order to evaluate the resulting transient performance, two different models are implemented with the aid of numerical simulation toolbox SimPowerSystems, working under the commercial software Matlab/Simulink. Voltage transients in LVAC and LVDC systems are simulated, resulting from an identical disturbance, i.e. disconnection of one of the Diesel Generators. From the observed transient responses, two different integral indices are used to assess the degree of system stability for both the LVAC and LVDC configurations. The indices considered are: Integral Absolute Error and Integral Time Absolute Error. The smaller values of the integral indices show the excellent capability of DC technology to maintain voltage stability following typical disturbances.","PeriodicalId":287492,"journal":{"name":"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modeling and simulation of an LVDC shipboard power system: Voltage transients comparison with a standard LVAC solution\",\"authors\":\"D. Bosich, M. Gibescu, N. Remijn, I. Fazlagic, Jos de Regt\",\"doi\":\"10.1109/ESARS.2015.7101461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voltage stability is a focal issue in every shipboard power system, where strict requirements (e.g. specified by STANAG 1008, classification rules, IEEE and IEC standards) are defined to guarantee safe operation under various operating conditions. This work proposes a low-voltage DC (LVDC) shipboard power system design and evaluates its voltage stability performance by comparing it with a standard low-voltage AC (LVAC) design. In order to evaluate the resulting transient performance, two different models are implemented with the aid of numerical simulation toolbox SimPowerSystems, working under the commercial software Matlab/Simulink. Voltage transients in LVAC and LVDC systems are simulated, resulting from an identical disturbance, i.e. disconnection of one of the Diesel Generators. From the observed transient responses, two different integral indices are used to assess the degree of system stability for both the LVAC and LVDC configurations. The indices considered are: Integral Absolute Error and Integral Time Absolute Error. The smaller values of the integral indices show the excellent capability of DC technology to maintain voltage stability following typical disturbances.\",\"PeriodicalId\":287492,\"journal\":{\"name\":\"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESARS.2015.7101461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESARS.2015.7101461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

电压稳定性是每个船舶电力系统的焦点问题,其中定义了严格的要求(例如STANAG 1008,船级规则,IEEE和IEC标准),以保证在各种运行条件下的安全运行。本文提出了一种低压直流(LVDC)舰载电力系统的设计方案,并通过与标准低压交流(LVAC)设计方案的比较,对其电压稳定性进行了评价。为了评估产生的瞬态性能,在商业软件Matlab/Simulink下,借助数值模拟工具箱SimPowerSystems实现了两种不同的模型。模拟了LVAC系统和LVDC系统在同一扰动下的电压瞬变,即一台柴油发电机断开。从观测到的瞬态响应中,使用两个不同的积分指标来评估LVAC和LVDC配置的系统稳定性程度。考虑的指标有:积分绝对误差和积分时间绝对误差。积分指标的较小值表明直流技术在典型扰动下保持电压稳定的优异能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and simulation of an LVDC shipboard power system: Voltage transients comparison with a standard LVAC solution
Voltage stability is a focal issue in every shipboard power system, where strict requirements (e.g. specified by STANAG 1008, classification rules, IEEE and IEC standards) are defined to guarantee safe operation under various operating conditions. This work proposes a low-voltage DC (LVDC) shipboard power system design and evaluates its voltage stability performance by comparing it with a standard low-voltage AC (LVAC) design. In order to evaluate the resulting transient performance, two different models are implemented with the aid of numerical simulation toolbox SimPowerSystems, working under the commercial software Matlab/Simulink. Voltage transients in LVAC and LVDC systems are simulated, resulting from an identical disturbance, i.e. disconnection of one of the Diesel Generators. From the observed transient responses, two different integral indices are used to assess the degree of system stability for both the LVAC and LVDC configurations. The indices considered are: Integral Absolute Error and Integral Time Absolute Error. The smaller values of the integral indices show the excellent capability of DC technology to maintain voltage stability following typical disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信