一类mosfet双极非线性负阻振荡器

D. Vizireanu, R. Serban
{"title":"一类mosfet双极非线性负阻振荡器","authors":"D. Vizireanu, R. Serban","doi":"10.1109/SMICND.1997.651337","DOIUrl":null,"url":null,"abstract":"In this paper a class of MOSFET-bipolar nonlinear negative resistance is proposed. A mathematical model for the voltage-current equation is shown. We investigate the mathematical properties of the associated nonlinear differential equation for a single-mode LCR network oscillator. In particular, we prove that under suitable conditions, small-amplitude stable limit-cycle oscillations can occur. An analytic approximation is obtained far the periodic solution. This prediction is compared with the results obtained by numerical integration.","PeriodicalId":144314,"journal":{"name":"1997 International Semiconductor Conference 20th Edition. CAS '97 Proceedings","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of the MOSFET-bipolar nonlinear negative resistance oscillator\",\"authors\":\"D. Vizireanu, R. Serban\",\"doi\":\"10.1109/SMICND.1997.651337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a class of MOSFET-bipolar nonlinear negative resistance is proposed. A mathematical model for the voltage-current equation is shown. We investigate the mathematical properties of the associated nonlinear differential equation for a single-mode LCR network oscillator. In particular, we prove that under suitable conditions, small-amplitude stable limit-cycle oscillations can occur. An analytic approximation is obtained far the periodic solution. This prediction is compared with the results obtained by numerical integration.\",\"PeriodicalId\":144314,\"journal\":{\"name\":\"1997 International Semiconductor Conference 20th Edition. CAS '97 Proceedings\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 International Semiconductor Conference 20th Edition. CAS '97 Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMICND.1997.651337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 International Semiconductor Conference 20th Edition. CAS '97 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.1997.651337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一类mosfet双极非线性负电阻。给出了电压-电流方程的数学模型。研究了单模LCR网络振荡器相关非线性微分方程的数学性质。特别地,我们证明了在适当的条件下,可以出现小振幅稳定的极限环振荡。得到了周期解的解析近似。并将此预测结果与数值积分结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of the MOSFET-bipolar nonlinear negative resistance oscillator
In this paper a class of MOSFET-bipolar nonlinear negative resistance is proposed. A mathematical model for the voltage-current equation is shown. We investigate the mathematical properties of the associated nonlinear differential equation for a single-mode LCR network oscillator. In particular, we prove that under suitable conditions, small-amplitude stable limit-cycle oscillations can occur. An analytic approximation is obtained far the periodic solution. This prediction is compared with the results obtained by numerical integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信