I. Starostin, S. Khalyutin, A. Davidov, A. Lyovin, Alexander Trubachev
{"title":"锂离子电池放电特性数学模型的建立","authors":"I. Starostin, S. Khalyutin, A. Davidov, A. Lyovin, Alexander Trubachev","doi":"10.1109/ICOECS46375.2019.8949976","DOIUrl":null,"url":null,"abstract":"This paper is devoted to obtaining a mathematical model of the lithium-ion battery discharge capacity at a constant current discharge from the system of physical and chemical processes in a lithium-ion battery equations obtained earlier by the authors. The input of this model is the discharge capacity of a particular instance of a lithium-ion battery and a constant discharge current at which the discharge capacity is determined. The output of the model is determined by the discharge capacity of the considered instance of the lithium-ion battery. The model under consideration for the discharge capacities of a lithium-ion battery is obtained by excluding dynamic variables and unknown constant coefficients from the system of physical and chemical processes in lithium-ion battery equations. This exclusion of dynamic variables is carried out numerically by calculating different dynamics of physical and chemical processes in a lithium-ion battery corresponding to different values of constant coefficients and further approximation of the desired model on these calculated dynamics. The obtained model is tested experimentally.","PeriodicalId":371743,"journal":{"name":"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Development of a Mathematical Model of Lithium-Ion Battery Discharge Characteristics\",\"authors\":\"I. Starostin, S. Khalyutin, A. Davidov, A. Lyovin, Alexander Trubachev\",\"doi\":\"10.1109/ICOECS46375.2019.8949976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to obtaining a mathematical model of the lithium-ion battery discharge capacity at a constant current discharge from the system of physical and chemical processes in a lithium-ion battery equations obtained earlier by the authors. The input of this model is the discharge capacity of a particular instance of a lithium-ion battery and a constant discharge current at which the discharge capacity is determined. The output of the model is determined by the discharge capacity of the considered instance of the lithium-ion battery. The model under consideration for the discharge capacities of a lithium-ion battery is obtained by excluding dynamic variables and unknown constant coefficients from the system of physical and chemical processes in lithium-ion battery equations. This exclusion of dynamic variables is carried out numerically by calculating different dynamics of physical and chemical processes in a lithium-ion battery corresponding to different values of constant coefficients and further approximation of the desired model on these calculated dynamics. The obtained model is tested experimentally.\",\"PeriodicalId\":371743,\"journal\":{\"name\":\"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOECS46375.2019.8949976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOECS46375.2019.8949976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Development of a Mathematical Model of Lithium-Ion Battery Discharge Characteristics
This paper is devoted to obtaining a mathematical model of the lithium-ion battery discharge capacity at a constant current discharge from the system of physical and chemical processes in a lithium-ion battery equations obtained earlier by the authors. The input of this model is the discharge capacity of a particular instance of a lithium-ion battery and a constant discharge current at which the discharge capacity is determined. The output of the model is determined by the discharge capacity of the considered instance of the lithium-ion battery. The model under consideration for the discharge capacities of a lithium-ion battery is obtained by excluding dynamic variables and unknown constant coefficients from the system of physical and chemical processes in lithium-ion battery equations. This exclusion of dynamic variables is carried out numerically by calculating different dynamics of physical and chemical processes in a lithium-ion battery corresponding to different values of constant coefficients and further approximation of the desired model on these calculated dynamics. The obtained model is tested experimentally.