基于强化学习的多模态水声通信自适应切换

Cheng Fan, Zhaohui Wang
{"title":"基于强化学习的多模态水声通信自适应切换","authors":"Cheng Fan, Zhaohui Wang","doi":"10.1145/3491315.3491354","DOIUrl":null,"url":null,"abstract":"The underwater acoustic (UWA) channel is a complex and stochastic process with large spatial and temporal dynamics. This work studies the adaptation of the communication strategy to the channel dynamics. Specifically, a set of communication strategies are considered, including frequency shift keying (FSK), single-carrier communication, and multicarrier communication. Based on the channel condition, a reinforcement learning (RL) algorithm, the Depth Determined Strategy Gradient (DDPG) method along with a Gumbel-softmax scheme is employed for intelligent and adaptive switching among those communication strategies. The adaptive switching is performed on a transmission block-by-block basis, with the goal of maximizing a long-term system performance. The reward function is defined based on the energy efficiency and the spectral efficiency of the communication strategies. Simulation results reveal that the proposed method outperforms a random selection method in time-varying channels.","PeriodicalId":191580,"journal":{"name":"Proceedings of the 15th International Conference on Underwater Networks & Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive Switching for Multimodal Underwater Acoustic Communications Based on Reinforcement Learning\",\"authors\":\"Cheng Fan, Zhaohui Wang\",\"doi\":\"10.1145/3491315.3491354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The underwater acoustic (UWA) channel is a complex and stochastic process with large spatial and temporal dynamics. This work studies the adaptation of the communication strategy to the channel dynamics. Specifically, a set of communication strategies are considered, including frequency shift keying (FSK), single-carrier communication, and multicarrier communication. Based on the channel condition, a reinforcement learning (RL) algorithm, the Depth Determined Strategy Gradient (DDPG) method along with a Gumbel-softmax scheme is employed for intelligent and adaptive switching among those communication strategies. The adaptive switching is performed on a transmission block-by-block basis, with the goal of maximizing a long-term system performance. The reward function is defined based on the energy efficiency and the spectral efficiency of the communication strategies. Simulation results reveal that the proposed method outperforms a random selection method in time-varying channels.\",\"PeriodicalId\":191580,\"journal\":{\"name\":\"Proceedings of the 15th International Conference on Underwater Networks & Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Conference on Underwater Networks & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3491315.3491354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Underwater Networks & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491315.3491354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

水声信道是一个复杂的随机过程,具有较大的时空动态。本文研究了通信策略对信道动态的适应。具体来说,考虑了一组通信策略,包括频移键控(FSK)、单载波通信和多载波通信。基于信道条件,采用强化学习(RL)算法、深度决定策略梯度(DDPG)方法和Gumbel-softmax方案实现通信策略之间的智能自适应切换。自适应交换是在传输块逐块的基础上进行的,目标是最大化长期系统性能。奖励函数是基于通信策略的能量效率和频谱效率来定义的。仿真结果表明,该方法在时变信道中优于随机选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Switching for Multimodal Underwater Acoustic Communications Based on Reinforcement Learning
The underwater acoustic (UWA) channel is a complex and stochastic process with large spatial and temporal dynamics. This work studies the adaptation of the communication strategy to the channel dynamics. Specifically, a set of communication strategies are considered, including frequency shift keying (FSK), single-carrier communication, and multicarrier communication. Based on the channel condition, a reinforcement learning (RL) algorithm, the Depth Determined Strategy Gradient (DDPG) method along with a Gumbel-softmax scheme is employed for intelligent and adaptive switching among those communication strategies. The adaptive switching is performed on a transmission block-by-block basis, with the goal of maximizing a long-term system performance. The reward function is defined based on the energy efficiency and the spectral efficiency of the communication strategies. Simulation results reveal that the proposed method outperforms a random selection method in time-varying channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信