{"title":"Simultaneous Timing Driven Tree Surgery in Routing with Machine Learning-based Acceleration","authors":"Peishan Tu, Chak-Wa Pui, Evangeline F. Y. Young","doi":"10.1145/3194554.3194556","DOIUrl":null,"url":null,"abstract":"In global routing, both timing and routability are critical criterions to measure the performance of a design. However, these two objectives naturally conflict with each other during routing. In this paper, a tree surgery technique is presented to adjust routing tree topologies in global routing to fix timing. We formulate the problem as a quadratic program(QP), which adjusts routing topologies of all the nets from a global perspective and takes congestion into consideration to trade off timing and routability objectives. We also apply machine learning-based techniques to accelerate our algorithm, which offers a fast and effective way to solve the problem. Experimental results on ICCAD~2015 benchmarks show that our algorithms can achieve 10.12% timing improvement with no significant degradation in routability and wirelength. With machine learning-based acceleration (MLA), our results can be obtained in almost negligible runtime.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simultaneous Timing Driven Tree Surgery in Routing with Machine Learning-based Acceleration
In global routing, both timing and routability are critical criterions to measure the performance of a design. However, these two objectives naturally conflict with each other during routing. In this paper, a tree surgery technique is presented to adjust routing tree topologies in global routing to fix timing. We formulate the problem as a quadratic program(QP), which adjusts routing topologies of all the nets from a global perspective and takes congestion into consideration to trade off timing and routability objectives. We also apply machine learning-based techniques to accelerate our algorithm, which offers a fast and effective way to solve the problem. Experimental results on ICCAD~2015 benchmarks show that our algorithms can achieve 10.12% timing improvement with no significant degradation in routability and wirelength. With machine learning-based acceleration (MLA), our results can be obtained in almost negligible runtime.