N. Žnidaršič, Polona Mrak, Eva Rajh, K. Ž. Soderžnik, M. Čeh, J. Štrus
{"title":"组织化学、荧光和电子显微镜下的角质层基质成像","authors":"N. Žnidaršič, Polona Mrak, Eva Rajh, K. Ž. Soderžnik, M. Čeh, J. Štrus","doi":"10.1556/2051.2018.00052","DOIUrl":null,"url":null,"abstract":"Biomineralized structures consist of an organic matrix and mineral constituents. Imaging of the mineralized biological tissues is demanding due to specific requirements for the preservation and visualization of chemically different constituents and due to sectioning difficulties. In this study, a characterization of the cuticular matrix of the crustacean exoskeleton was performed by a combination of microscopic methods, aiming to obtain spatial information on the matrix composition. Histochemical procedures were performed and compared in artificially decalcified and non-decalcified samples, in paraffin and resin sections. Wheat germ agglutinin (WGA) lectin-gold conjugate and a fluorescent chitin-binding probe were used to localize chitin in paraffin and resin sections of samples prepared by different fixations. Calcified regions of the matrix were determined by histochemical staining of aldehyde-fixed, methanol-fixed, and resin-embedded samples and by scanning electron microscopy with energy dispersive X-...","PeriodicalId":251226,"journal":{"name":"Resolution and Discovery","volume":"492 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cuticle matrix imaging by histochemistry, fluorescence, and electron microscopy\",\"authors\":\"N. Žnidaršič, Polona Mrak, Eva Rajh, K. Ž. Soderžnik, M. Čeh, J. Štrus\",\"doi\":\"10.1556/2051.2018.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomineralized structures consist of an organic matrix and mineral constituents. Imaging of the mineralized biological tissues is demanding due to specific requirements for the preservation and visualization of chemically different constituents and due to sectioning difficulties. In this study, a characterization of the cuticular matrix of the crustacean exoskeleton was performed by a combination of microscopic methods, aiming to obtain spatial information on the matrix composition. Histochemical procedures were performed and compared in artificially decalcified and non-decalcified samples, in paraffin and resin sections. Wheat germ agglutinin (WGA) lectin-gold conjugate and a fluorescent chitin-binding probe were used to localize chitin in paraffin and resin sections of samples prepared by different fixations. Calcified regions of the matrix were determined by histochemical staining of aldehyde-fixed, methanol-fixed, and resin-embedded samples and by scanning electron microscopy with energy dispersive X-...\",\"PeriodicalId\":251226,\"journal\":{\"name\":\"Resolution and Discovery\",\"volume\":\"492 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resolution and Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/2051.2018.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resolution and Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/2051.2018.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cuticle matrix imaging by histochemistry, fluorescence, and electron microscopy
Biomineralized structures consist of an organic matrix and mineral constituents. Imaging of the mineralized biological tissues is demanding due to specific requirements for the preservation and visualization of chemically different constituents and due to sectioning difficulties. In this study, a characterization of the cuticular matrix of the crustacean exoskeleton was performed by a combination of microscopic methods, aiming to obtain spatial information on the matrix composition. Histochemical procedures were performed and compared in artificially decalcified and non-decalcified samples, in paraffin and resin sections. Wheat germ agglutinin (WGA) lectin-gold conjugate and a fluorescent chitin-binding probe were used to localize chitin in paraffin and resin sections of samples prepared by different fixations. Calcified regions of the matrix were determined by histochemical staining of aldehyde-fixed, methanol-fixed, and resin-embedded samples and by scanning electron microscopy with energy dispersive X-...