估计最大日降雨量的广义极值和Gumbel分布的评价

Á. J. Back, Fernanda Martins Bonfante
{"title":"估计最大日降雨量的广义极值和Gumbel分布的评价","authors":"Á. J. Back, Fernanda Martins Bonfante","doi":"10.5327/z217694781015","DOIUrl":null,"url":null,"abstract":"Extreme rain events can cause social and economic impacts in various sectors. Knowing the risk of occurrences of extreme events is fundamental for the establishment of mitigation measures and for risk management. The analysis of frequencies of historical series of observed rain through theoretical probability distributions is the most commonly used method. The generalized extreme value (GEV) and Gumbel probability distributions stand out among those applied to estimate the maximum daily rainfall. The indication of the best distribution depends on characteristics of the data series used to adjust parameters and criteria used for selection. This study compares GEV and Gumbel distributions and analyzes different criteria used to select the best distribution. We used 224 series of annual maximums of rainfall stations in Santa Catarina (Brazil), with sizes between 12 and 90 years and asymmetry coefficient ranging from -0.277 to 3.917. We used the Anderson–Darling, Kolmogorov-Smirnov (KS), and Filliben adhesion tests. For an indication of the best distribution, we used the standard error of estimate, Akaike’s criterion, and the ranking with adhesion tests. KS test proved to be less rigorous and only rejected 0.25% of distributions tested, while Anderson–Darling and Filliben tests rejected 9.06% and 8.8% of distributions, respectively. GEV distribution proved to be the most indicated for most stations. High agreement (73.7%) was only found in the indication of the best distribution between Filliben tests and the standard error of estimate.","PeriodicalId":352759,"journal":{"name":"Revista Brasileira de Ciências Ambientais","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall\",\"authors\":\"Á. J. Back, Fernanda Martins Bonfante\",\"doi\":\"10.5327/z217694781015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme rain events can cause social and economic impacts in various sectors. Knowing the risk of occurrences of extreme events is fundamental for the establishment of mitigation measures and for risk management. The analysis of frequencies of historical series of observed rain through theoretical probability distributions is the most commonly used method. The generalized extreme value (GEV) and Gumbel probability distributions stand out among those applied to estimate the maximum daily rainfall. The indication of the best distribution depends on characteristics of the data series used to adjust parameters and criteria used for selection. This study compares GEV and Gumbel distributions and analyzes different criteria used to select the best distribution. We used 224 series of annual maximums of rainfall stations in Santa Catarina (Brazil), with sizes between 12 and 90 years and asymmetry coefficient ranging from -0.277 to 3.917. We used the Anderson–Darling, Kolmogorov-Smirnov (KS), and Filliben adhesion tests. For an indication of the best distribution, we used the standard error of estimate, Akaike’s criterion, and the ranking with adhesion tests. KS test proved to be less rigorous and only rejected 0.25% of distributions tested, while Anderson–Darling and Filliben tests rejected 9.06% and 8.8% of distributions, respectively. GEV distribution proved to be the most indicated for most stations. High agreement (73.7%) was only found in the indication of the best distribution between Filliben tests and the standard error of estimate.\",\"PeriodicalId\":352759,\"journal\":{\"name\":\"Revista Brasileira de Ciências Ambientais\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Ciências Ambientais\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5327/z217694781015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Ciências Ambientais","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5327/z217694781015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

极端降雨事件会对各个部门造成社会和经济影响。了解极端事件发生的风险对于制定缓解措施和风险管理至关重要。通过理论概率分布分析历史降水序列的频率是最常用的方法。广义极值(GEV)和甘贝尔概率分布在用于估计最大日降雨量的分布中表现突出。最佳分布的指示取决于用于调整参数的数据序列的特征和用于选择的标准。本研究比较了GEV和Gumbel分布,并分析了选择最佳分布的不同标准。利用巴西圣卡塔琳娜(Santa Catarina)地区224个台站的年最大值序列,尺度在12 ~ 90年之间,不对称系数在-0.277 ~ 3.917之间。我们使用Anderson-Darling、Kolmogorov-Smirnov (KS)和Filliben黏附试验。为了表明最佳分布,我们使用了估计的标准误差、赤池准则和粘附试验的排名。KS检验被证明不那么严格,只拒绝了0.25%的分布,而Anderson-Darling和Filliben检验分别拒绝了9.06%和8.8%的分布。GEV分布对大多数台站来说是最明显的。高一致性(73.7%)仅在Filliben试验与估计标准误差之间的最佳分布指示中被发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall
Extreme rain events can cause social and economic impacts in various sectors. Knowing the risk of occurrences of extreme events is fundamental for the establishment of mitigation measures and for risk management. The analysis of frequencies of historical series of observed rain through theoretical probability distributions is the most commonly used method. The generalized extreme value (GEV) and Gumbel probability distributions stand out among those applied to estimate the maximum daily rainfall. The indication of the best distribution depends on characteristics of the data series used to adjust parameters and criteria used for selection. This study compares GEV and Gumbel distributions and analyzes different criteria used to select the best distribution. We used 224 series of annual maximums of rainfall stations in Santa Catarina (Brazil), with sizes between 12 and 90 years and asymmetry coefficient ranging from -0.277 to 3.917. We used the Anderson–Darling, Kolmogorov-Smirnov (KS), and Filliben adhesion tests. For an indication of the best distribution, we used the standard error of estimate, Akaike’s criterion, and the ranking with adhesion tests. KS test proved to be less rigorous and only rejected 0.25% of distributions tested, while Anderson–Darling and Filliben tests rejected 9.06% and 8.8% of distributions, respectively. GEV distribution proved to be the most indicated for most stations. High agreement (73.7%) was only found in the indication of the best distribution between Filliben tests and the standard error of estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信