利用FIR滤波提高传感器网络分布式滤波的鲁棒性

Miguel Vazquez-Olguin, Y. Shmaliy, O. Ibarra-Manzano
{"title":"利用FIR滤波提高传感器网络分布式滤波的鲁棒性","authors":"Miguel Vazquez-Olguin, Y. Shmaliy, O. Ibarra-Manzano","doi":"10.1109/ICEEE.2016.7751188","DOIUrl":null,"url":null,"abstract":"Robustness is required from an estimator to provide better performance if a wireless sensor network (WSN) operates under harsh conditions with incomplete information about noise. This paper shows that robustness of the WSN can be improved by using the distributed unbiased finite impulse response (UFIR) filter rather than the traditional distributed Kalman filter (KF), both based on the average consensus. Unlike the KF, the UFIR filter completely ignores the noise statistics and initial values which are typically not well known. As an example, we consider a vehicle travelling along a circular trajectory under unpredictable impacts and errors in the noise statistics. A case of impulsive noise generated by manufacturing process is also considered.","PeriodicalId":285464,"journal":{"name":"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving robustness of distributed filtering for sensor networks using FIR filtering\",\"authors\":\"Miguel Vazquez-Olguin, Y. Shmaliy, O. Ibarra-Manzano\",\"doi\":\"10.1109/ICEEE.2016.7751188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robustness is required from an estimator to provide better performance if a wireless sensor network (WSN) operates under harsh conditions with incomplete information about noise. This paper shows that robustness of the WSN can be improved by using the distributed unbiased finite impulse response (UFIR) filter rather than the traditional distributed Kalman filter (KF), both based on the average consensus. Unlike the KF, the UFIR filter completely ignores the noise statistics and initial values which are typically not well known. As an example, we consider a vehicle travelling along a circular trajectory under unpredictable impacts and errors in the noise statistics. A case of impulsive noise generated by manufacturing process is also considered.\",\"PeriodicalId\":285464,\"journal\":{\"name\":\"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2016.7751188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2016.7751188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果无线传感器网络(WSN)在噪声信息不完全的恶劣条件下工作,则需要估计器的鲁棒性以提供更好的性能。研究表明,采用基于平均一致性的分布无偏有限脉冲响应(UFIR)滤波器可以提高WSN的鲁棒性,而不是传统的分布卡尔曼滤波器(KF)。与KF不同,UFIR滤波器完全忽略了通常不为人所知的噪声统计和初始值。作为一个例子,我们考虑在不可预测的冲击和噪声统计误差下沿圆形轨道行驶的车辆。还考虑了制造过程中产生的脉冲噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving robustness of distributed filtering for sensor networks using FIR filtering
Robustness is required from an estimator to provide better performance if a wireless sensor network (WSN) operates under harsh conditions with incomplete information about noise. This paper shows that robustness of the WSN can be improved by using the distributed unbiased finite impulse response (UFIR) filter rather than the traditional distributed Kalman filter (KF), both based on the average consensus. Unlike the KF, the UFIR filter completely ignores the noise statistics and initial values which are typically not well known. As an example, we consider a vehicle travelling along a circular trajectory under unpredictable impacts and errors in the noise statistics. A case of impulsive noise generated by manufacturing process is also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信