基于网格的DBSCAN雷达数据扩展目标聚类

Dominik Kellner, J. Klappstein, K. Dietmayer
{"title":"基于网格的DBSCAN雷达数据扩展目标聚类","authors":"Dominik Kellner, J. Klappstein, K. Dietmayer","doi":"10.1109/IVS.2012.6232167","DOIUrl":null,"url":null,"abstract":"The online observation using high-resolution radar of a scene containing extended objects imposes new requirements on a robust and fast clustering algorithm. This paper presents an algorithm based on the most cited and common clustering algorithm: DBSCAN [1]. The algorithm is modified to deal with the non-equidistant sampling density and clutter of radar data while maintaining all its prior advantages. Furthermore, it uses varying sampling resolution to perform an optimized separation of objects at the same time it is robust against clutter. The algorithm is independent of difficult to estimate input parameters such as the number or shape of available objects. The algorithm outperforms DBSCAN in terms of speed by using the knowledge of the sampling density of the sensor (increase of app. 40-70%). The algorithm obtains an even better result than DBSCAN by including the Doppler and amplitude information (unitless distance criteria).","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Grid-based DBSCAN for clustering extended objects in radar data\",\"authors\":\"Dominik Kellner, J. Klappstein, K. Dietmayer\",\"doi\":\"10.1109/IVS.2012.6232167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The online observation using high-resolution radar of a scene containing extended objects imposes new requirements on a robust and fast clustering algorithm. This paper presents an algorithm based on the most cited and common clustering algorithm: DBSCAN [1]. The algorithm is modified to deal with the non-equidistant sampling density and clutter of radar data while maintaining all its prior advantages. Furthermore, it uses varying sampling resolution to perform an optimized separation of objects at the same time it is robust against clutter. The algorithm is independent of difficult to estimate input parameters such as the number or shape of available objects. The algorithm outperforms DBSCAN in terms of speed by using the knowledge of the sampling density of the sensor (increase of app. 40-70%). The algorithm obtains an even better result than DBSCAN by including the Doppler and amplitude information (unitless distance criteria).\",\"PeriodicalId\":402389,\"journal\":{\"name\":\"2012 IEEE Intelligent Vehicles Symposium\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2012.6232167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

利用高分辨率雷达对包含扩展目标的场景进行在线观测,对鲁棒性和快速聚类算法提出了新的要求。本文在引用次数最多、最常用的聚类算法DBSCAN的基础上提出了一种算法[1]。在保持原有算法优点的同时,对算法进行了改进,以处理雷达数据的非等距采样密度和杂波。此外,它使用不同的采样分辨率来执行优化的目标分离,同时对杂波具有鲁棒性。该算法独立于难以估计的输入参数,如可用对象的数量或形状。该算法利用传感器采样密度的知识,在速度上优于DBSCAN(提高40-70%)。该算法包含了多普勒和振幅信息(无单位距离准则),得到了比DBSCAN更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grid-based DBSCAN for clustering extended objects in radar data
The online observation using high-resolution radar of a scene containing extended objects imposes new requirements on a robust and fast clustering algorithm. This paper presents an algorithm based on the most cited and common clustering algorithm: DBSCAN [1]. The algorithm is modified to deal with the non-equidistant sampling density and clutter of radar data while maintaining all its prior advantages. Furthermore, it uses varying sampling resolution to perform an optimized separation of objects at the same time it is robust against clutter. The algorithm is independent of difficult to estimate input parameters such as the number or shape of available objects. The algorithm outperforms DBSCAN in terms of speed by using the knowledge of the sampling density of the sensor (increase of app. 40-70%). The algorithm obtains an even better result than DBSCAN by including the Doppler and amplitude information (unitless distance criteria).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信