一般二阶常微分方程的单步修正块混合法

Adee, Solomon Ortwer, Kumleng, Geoffrey Micah
{"title":"一般二阶常微分方程的单步修正块混合法","authors":"Adee, Solomon Ortwer, Kumleng, Geoffrey Micah","doi":"10.56919/usci.2123.002","DOIUrl":null,"url":null,"abstract":"A multistep collocation approach is used to derive a single-step modified block hybrid method (MBHM) of order five for solving general second-order initial-value problems (IVPs) of ordinary differential equations (ODEs). The new method's basic convergence property is established, and its numerical accuracy is demonstrated using numerical examples from the literature. The new method outperforms similar methods in terms of accuracy, earning it a recommendation as a likely candidate for solving general second-order ODEs.","PeriodicalId":235595,"journal":{"name":"UMYU Scientifica","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Single-Step Modified Block Hybrid Method for General Second-Order Ordinary Differential Equations\",\"authors\":\"Adee, Solomon Ortwer, Kumleng, Geoffrey Micah\",\"doi\":\"10.56919/usci.2123.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multistep collocation approach is used to derive a single-step modified block hybrid method (MBHM) of order five for solving general second-order initial-value problems (IVPs) of ordinary differential equations (ODEs). The new method's basic convergence property is established, and its numerical accuracy is demonstrated using numerical examples from the literature. The new method outperforms similar methods in terms of accuracy, earning it a recommendation as a likely candidate for solving general second-order ODEs.\",\"PeriodicalId\":235595,\"journal\":{\"name\":\"UMYU Scientifica\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UMYU Scientifica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56919/usci.2123.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UMYU Scientifica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56919/usci.2123.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用多步配置方法,推导出求解一般二阶常微分方程初值问题的五阶单步修正块混合法。建立了新方法的基本收敛性,并用文献中的数值算例证明了该方法的数值精度。新方法在准确性方面优于类似的方法,因此被推荐为求解一般二阶ode的可能候选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Single-Step Modified Block Hybrid Method for General Second-Order Ordinary Differential Equations
A multistep collocation approach is used to derive a single-step modified block hybrid method (MBHM) of order five for solving general second-order initial-value problems (IVPs) of ordinary differential equations (ODEs). The new method's basic convergence property is established, and its numerical accuracy is demonstrated using numerical examples from the literature. The new method outperforms similar methods in terms of accuracy, earning it a recommendation as a likely candidate for solving general second-order ODEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信