用自相关函数评价方法对局部放电信号进行分类

A. Contin, S. Pastore
{"title":"用自相关函数评价方法对局部放电信号进行分类","authors":"A. Contin, S. Pastore","doi":"10.1109/ELINSL.2006.1665317","DOIUrl":null,"url":null,"abstract":"A new algorithm for the separation of partial discharge (PD) signals due to multiple sources is presented in this paper. It evaluates the similarity of the signals shape by comparing their auto-correlation functions (ACFs), on the assumption that the same PD source can exhibit signals having similar ACFs. The new classification algorithm is based on a modified K-mean clustering (KMC) method. A laboratory test of the proposed algorithm is reported. The proposed classification method may constitute a step forward in the automatic signal separation","PeriodicalId":427638,"journal":{"name":"Conference Record of the 2006 IEEE International Symposium on Electrical Insulation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Classification of partial discharge signals by means of auto-correlation function evaluation\",\"authors\":\"A. Contin, S. Pastore\",\"doi\":\"10.1109/ELINSL.2006.1665317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm for the separation of partial discharge (PD) signals due to multiple sources is presented in this paper. It evaluates the similarity of the signals shape by comparing their auto-correlation functions (ACFs), on the assumption that the same PD source can exhibit signals having similar ACFs. The new classification algorithm is based on a modified K-mean clustering (KMC) method. A laboratory test of the proposed algorithm is reported. The proposed classification method may constitute a step forward in the automatic signal separation\",\"PeriodicalId\":427638,\"journal\":{\"name\":\"Conference Record of the 2006 IEEE International Symposium on Electrical Insulation\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the 2006 IEEE International Symposium on Electrical Insulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINSL.2006.1665317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2006 IEEE International Symposium on Electrical Insulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINSL.2006.1665317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种分离多源局部放电信号的新算法。它通过比较信号的自相关函数(ACFs)来评估信号形状的相似性,假设相同的PD源可以显示具有相似ACFs的信号。新的分类算法是基于改进的k -均值聚类(KMC)方法。本文报道了该算法的实验室测试。所提出的分类方法在信号自动分离方面又向前迈进了一步
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of partial discharge signals by means of auto-correlation function evaluation
A new algorithm for the separation of partial discharge (PD) signals due to multiple sources is presented in this paper. It evaluates the similarity of the signals shape by comparing their auto-correlation functions (ACFs), on the assumption that the same PD source can exhibit signals having similar ACFs. The new classification algorithm is based on a modified K-mean clustering (KMC) method. A laboratory test of the proposed algorithm is reported. The proposed classification method may constitute a step forward in the automatic signal separation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信