高斯-牛顿算法的最优收敛因子及其在自适应并行实现中的应用

P. Diniz, J. Cousseau
{"title":"高斯-牛顿算法的最优收敛因子及其在自适应并行实现中的应用","authors":"P. Diniz, J. Cousseau","doi":"10.1109/ITS.1990.175639","DOIUrl":null,"url":null,"abstract":"An efficient approach for the calculation of the optimal convergence factor for Gauss-Newton algorithms is proposed. The method leads to variable step size (convergence factor) algorithms that yield fast convergence, with an acceptable added cost in computational complexity. The results are applied to a recently proposed frequency-domain parallel realization for an adaptive IIR (infinite impulse response) filter, and evaluated in systems identification applications. Simulations confirm the expected results.<<ETX>>","PeriodicalId":405932,"journal":{"name":"SBT/IEEE International Symposium on Telecommunications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal convergence factor for Gauss-Newton algorithms and its application to an adaptive parallel realization\",\"authors\":\"P. Diniz, J. Cousseau\",\"doi\":\"10.1109/ITS.1990.175639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient approach for the calculation of the optimal convergence factor for Gauss-Newton algorithms is proposed. The method leads to variable step size (convergence factor) algorithms that yield fast convergence, with an acceptable added cost in computational complexity. The results are applied to a recently proposed frequency-domain parallel realization for an adaptive IIR (infinite impulse response) filter, and evaluated in systems identification applications. Simulations confirm the expected results.<<ETX>>\",\"PeriodicalId\":405932,\"journal\":{\"name\":\"SBT/IEEE International Symposium on Telecommunications\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SBT/IEEE International Symposium on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITS.1990.175639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SBT/IEEE International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.1990.175639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种计算高斯-牛顿算法最优收敛因子的有效方法。该方法导致变步长(收敛因子)算法产生快速收敛,与可接受的增加成本的计算复杂性。结果应用于最近提出的自适应IIR(无限脉冲响应)滤波器的频域并行实现,并在系统识别应用中进行了评估。仿真结果证实了预期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal convergence factor for Gauss-Newton algorithms and its application to an adaptive parallel realization
An efficient approach for the calculation of the optimal convergence factor for Gauss-Newton algorithms is proposed. The method leads to variable step size (convergence factor) algorithms that yield fast convergence, with an acceptable added cost in computational complexity. The results are applied to a recently proposed frequency-domain parallel realization for an adaptive IIR (infinite impulse response) filter, and evaluated in systems identification applications. Simulations confirm the expected results.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信