{"title":"一种具有空间卷积编码器的高效节能4-PAM信令方案,用于片对片通信","authors":"K. Farzan, D. Johns","doi":"10.1109/ESSCIR.2004.1356681","DOIUrl":null,"url":null,"abstract":"Increasing demand for high-speed inter-chip interconnects requires faster links that consume less power. The Shannon limit for the capacity of these links is at least an order of magnitude higher than the data rate of the current state-of-the-art designs. Channel coding can be used to approach the theoretical Shannon limit. Although there are numerous capacity-approaching codes in the literature, the complexity of these codes prohibits their use in high-speed inter-chip applications. A low-complexity signaling scheme is proposed which can achieve 3-5 dB coding gain over uncoded 4-level pulse amplitude modulation (PAM). The receiver for this signaling scheme, along with a regular 4-PAM receiver, was designed and implemented in a 0.18 /spl mu/m standard digital CMOS technology. Experimental results show that the receiver is functional up to 2.5 Gb/s. The entire receiver for this scheme consumes only 22 mW at 2.5 Gb/s and occupies an area of 0.2 mm/sup 2/.","PeriodicalId":294077,"journal":{"name":"Proceedings of the 30th European Solid-State Circuits Conference","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A power-efficient 4-PAM signaling scheme with convolutional encoder in space for chip-to-chip communication\",\"authors\":\"K. Farzan, D. Johns\",\"doi\":\"10.1109/ESSCIR.2004.1356681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing demand for high-speed inter-chip interconnects requires faster links that consume less power. The Shannon limit for the capacity of these links is at least an order of magnitude higher than the data rate of the current state-of-the-art designs. Channel coding can be used to approach the theoretical Shannon limit. Although there are numerous capacity-approaching codes in the literature, the complexity of these codes prohibits their use in high-speed inter-chip applications. A low-complexity signaling scheme is proposed which can achieve 3-5 dB coding gain over uncoded 4-level pulse amplitude modulation (PAM). The receiver for this signaling scheme, along with a regular 4-PAM receiver, was designed and implemented in a 0.18 /spl mu/m standard digital CMOS technology. Experimental results show that the receiver is functional up to 2.5 Gb/s. The entire receiver for this scheme consumes only 22 mW at 2.5 Gb/s and occupies an area of 0.2 mm/sup 2/.\",\"PeriodicalId\":294077,\"journal\":{\"name\":\"Proceedings of the 30th European Solid-State Circuits Conference\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th European Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIR.2004.1356681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th European Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIR.2004.1356681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A power-efficient 4-PAM signaling scheme with convolutional encoder in space for chip-to-chip communication
Increasing demand for high-speed inter-chip interconnects requires faster links that consume less power. The Shannon limit for the capacity of these links is at least an order of magnitude higher than the data rate of the current state-of-the-art designs. Channel coding can be used to approach the theoretical Shannon limit. Although there are numerous capacity-approaching codes in the literature, the complexity of these codes prohibits their use in high-speed inter-chip applications. A low-complexity signaling scheme is proposed which can achieve 3-5 dB coding gain over uncoded 4-level pulse amplitude modulation (PAM). The receiver for this signaling scheme, along with a regular 4-PAM receiver, was designed and implemented in a 0.18 /spl mu/m standard digital CMOS technology. Experimental results show that the receiver is functional up to 2.5 Gb/s. The entire receiver for this scheme consumes only 22 mW at 2.5 Gb/s and occupies an area of 0.2 mm/sup 2/.