用遗传算法求解旅行商问题的研究

Chutian Sun
{"title":"用遗传算法求解旅行商问题的研究","authors":"Chutian Sun","doi":"10.1109/ICITM48982.2020.9080397","DOIUrl":null,"url":null,"abstract":"Travelling salesman problem is one of the most important problems in the optimization area. To solve the problem of traveling salesman, the GA (genetic algorithm) can be seen as an appropriate method. In the genetic algorithm, there are many parameters needing to be set in advance. To figure out the effects of parameters in GA, we conducted experiments with different parameters and compared the performance. In addition, we try to improve the algorithm in aspects of crossing and mutating. The improved GA obtained a better performance, showing the proposed improvement is efficient.","PeriodicalId":176979,"journal":{"name":"2020 9th International Conference on Industrial Technology and Management (ICITM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Study of Solving Traveling Salesman Problem with Genetic Algorithm\",\"authors\":\"Chutian Sun\",\"doi\":\"10.1109/ICITM48982.2020.9080397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Travelling salesman problem is one of the most important problems in the optimization area. To solve the problem of traveling salesman, the GA (genetic algorithm) can be seen as an appropriate method. In the genetic algorithm, there are many parameters needing to be set in advance. To figure out the effects of parameters in GA, we conducted experiments with different parameters and compared the performance. In addition, we try to improve the algorithm in aspects of crossing and mutating. The improved GA obtained a better performance, showing the proposed improvement is efficient.\",\"PeriodicalId\":176979,\"journal\":{\"name\":\"2020 9th International Conference on Industrial Technology and Management (ICITM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 9th International Conference on Industrial Technology and Management (ICITM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITM48982.2020.9080397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Conference on Industrial Technology and Management (ICITM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITM48982.2020.9080397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

旅行商问题是优化领域的重要问题之一。遗传算法是解决旅行商问题的一种合适的方法。在遗传算法中,有很多参数需要预先设置。为了了解参数对遗传算法的影响,我们进行了不同参数的实验,并对性能进行了比较。此外,我们还在交叉和变异方面对算法进行了改进。改进后的遗传算法获得了较好的性能,表明改进是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Solving Traveling Salesman Problem with Genetic Algorithm
Travelling salesman problem is one of the most important problems in the optimization area. To solve the problem of traveling salesman, the GA (genetic algorithm) can be seen as an appropriate method. In the genetic algorithm, there are many parameters needing to be set in advance. To figure out the effects of parameters in GA, we conducted experiments with different parameters and compared the performance. In addition, we try to improve the algorithm in aspects of crossing and mutating. The improved GA obtained a better performance, showing the proposed improvement is efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信