锗纳米线顶门控单电子晶体管

Sung-Kwon Shin, Shaoyun Huang, N. Fukata, K. Ishibashi
{"title":"锗纳米线顶门控单电子晶体管","authors":"Sung-Kwon Shin, Shaoyun Huang, N. Fukata, K. Ishibashi","doi":"10.1109/DRC.2011.5994425","DOIUrl":null,"url":null,"abstract":"Germanium nanowires (GeNWs) of the group IV semiconductors could be one of the attractive candidates for electron-spin based quantum devices because of their long electron-spin coherence time. Besides, Ge has an advantage over Si in terms of the larger quantum effects due to the smaller effective mass. Single-electron transistors (SETs) are basic building blocks of such devices. To define the spin configuration in the dot, it is necessary to reach a few-electron regime or an even-odd regime where the single spin is realized for the odd number of electrons in the dot. So far, we have developed processes to fabricate SETs using n-type monocrystalline GeNWs with a back gate, and succeeded in observing the even-odd effect [1]. In this work, we have developed fabrication processes of the top-gate SETs to enhance the gating efficiency, and succeeded in reaching a few-electron regime.","PeriodicalId":107059,"journal":{"name":"69th Device Research Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Top-gated single-electron transistor in germanium nanowires\",\"authors\":\"Sung-Kwon Shin, Shaoyun Huang, N. Fukata, K. Ishibashi\",\"doi\":\"10.1109/DRC.2011.5994425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Germanium nanowires (GeNWs) of the group IV semiconductors could be one of the attractive candidates for electron-spin based quantum devices because of their long electron-spin coherence time. Besides, Ge has an advantage over Si in terms of the larger quantum effects due to the smaller effective mass. Single-electron transistors (SETs) are basic building blocks of such devices. To define the spin configuration in the dot, it is necessary to reach a few-electron regime or an even-odd regime where the single spin is realized for the odd number of electrons in the dot. So far, we have developed processes to fabricate SETs using n-type monocrystalline GeNWs with a back gate, and succeeded in observing the even-odd effect [1]. In this work, we have developed fabrication processes of the top-gate SETs to enhance the gating efficiency, and succeeded in reaching a few-electron regime.\",\"PeriodicalId\":107059,\"journal\":{\"name\":\"69th Device Research Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"69th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2011.5994425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"69th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2011.5994425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

第四族半导体的锗纳米线由于具有较长的电子自旋相干时间,可能成为电子自旋量子器件的有吸引力的候选者之一。此外,由于有效质量较小,Ge在量子效应方面优于Si。单电子晶体管(set)是这种器件的基本组成部分。为了定义点内的自旋构型,必须达到少电子状态或奇偶电子状态,即点内奇数电子实现单自旋。到目前为止,我们已经开发了使用带后门的n型单晶genw制造set的工艺,并成功地观察到奇偶效应[1]。在这项工作中,我们开发了顶栅set的制造工艺,以提高门控效率,并成功地达到了少电子态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Top-gated single-electron transistor in germanium nanowires
Germanium nanowires (GeNWs) of the group IV semiconductors could be one of the attractive candidates for electron-spin based quantum devices because of their long electron-spin coherence time. Besides, Ge has an advantage over Si in terms of the larger quantum effects due to the smaller effective mass. Single-electron transistors (SETs) are basic building blocks of such devices. To define the spin configuration in the dot, it is necessary to reach a few-electron regime or an even-odd regime where the single spin is realized for the odd number of electrons in the dot. So far, we have developed processes to fabricate SETs using n-type monocrystalline GeNWs with a back gate, and succeeded in observing the even-odd effect [1]. In this work, we have developed fabrication processes of the top-gate SETs to enhance the gating efficiency, and succeeded in reaching a few-electron regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信