基于LDA、STM和NMF的俄语短文定性研究主题模型比较

M. Kirina
{"title":"基于LDA、STM和NMF的俄语短文定性研究主题模型比较","authors":"M. Kirina","doi":"10.25205/1818-7935-2022-20-2-93-109","DOIUrl":null,"url":null,"abstract":"The paper describes the results of topic modelling of short prose fiction based on three methods, namely Latent Dirichlet Allocation (LDA), the Structural Topic Model (STM), and the Non-Negative Matrix Factorization (NMF), combined with different text preprocessing options (all parts of speech vs. only nouns). The experimental design is tested on the basis of the Corpus of Russian Short Stories of 1900–1930s. The research made it possible to determine the specifics of the algorithms under consideration and to assess the effectiveness of their application for the qualitative analysis of fiction texts.","PeriodicalId":434662,"journal":{"name":"NSU Vestnik. Series: Linguistics and Intercultural Communication","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Topic Models Based on LDA, STM and NMF for Qualitative Studies of Russian Short Prose\",\"authors\":\"M. Kirina\",\"doi\":\"10.25205/1818-7935-2022-20-2-93-109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes the results of topic modelling of short prose fiction based on three methods, namely Latent Dirichlet Allocation (LDA), the Structural Topic Model (STM), and the Non-Negative Matrix Factorization (NMF), combined with different text preprocessing options (all parts of speech vs. only nouns). The experimental design is tested on the basis of the Corpus of Russian Short Stories of 1900–1930s. The research made it possible to determine the specifics of the algorithms under consideration and to assess the effectiveness of their application for the qualitative analysis of fiction texts.\",\"PeriodicalId\":434662,\"journal\":{\"name\":\"NSU Vestnik. Series: Linguistics and Intercultural Communication\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NSU Vestnik. Series: Linguistics and Intercultural Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25205/1818-7935-2022-20-2-93-109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NSU Vestnik. Series: Linguistics and Intercultural Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25205/1818-7935-2022-20-2-93-109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了基于潜狄利克雷分配(Latent Dirichlet Allocation, LDA)、结构主题模型(Structural topic Model, STM)和非负矩阵分解(Non-Negative Matrix Factorization, NMF)三种方法,结合不同的文本预处理选项(所有词性或仅名词),对短篇散文小说进行主题建模的结果。实验设计以1900 - 1930年代俄罗斯短篇小说语料库为基础进行检验。这项研究可以确定所考虑的算法的具体细节,并评估它们在小说文本定性分析中的应用效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Topic Models Based on LDA, STM and NMF for Qualitative Studies of Russian Short Prose
The paper describes the results of topic modelling of short prose fiction based on three methods, namely Latent Dirichlet Allocation (LDA), the Structural Topic Model (STM), and the Non-Negative Matrix Factorization (NMF), combined with different text preprocessing options (all parts of speech vs. only nouns). The experimental design is tested on the basis of the Corpus of Russian Short Stories of 1900–1930s. The research made it possible to determine the specifics of the algorithms under consideration and to assess the effectiveness of their application for the qualitative analysis of fiction texts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信