纳米结构氮化镓晶体管

N. Chowdhury, T. Palacios
{"title":"纳米结构氮化镓晶体管","authors":"N. Chowdhury, T. Palacios","doi":"10.1109/CSICS.2017.8240466","DOIUrl":null,"url":null,"abstract":"This paper describes how the use of nanostructures can significantly increase the performance of GaN transistors. 100–400 nm fins have been defined underneath the gate electrode of AlGaN/GaN transistors to increase the gate modulation efficiency of these devices and to allow for the tuning of the threshold voltage. The proper design of these fins allows not only an improvement in the DC performance of the device, but also a significant enhancement of the rf linearity of the transistors. The excellent electron transport in these nanostructures, combined with the wide bandgap of GaN, its large effective mass and its moderate electric permittivity, also allows the potential scaling of GaN transistors below 5 nm channel length. The theoretical performance of these ultra-scaled devices is benchmarked with respect to other competing technologies.","PeriodicalId":129729,"journal":{"name":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nanostructured GaN transistors\",\"authors\":\"N. Chowdhury, T. Palacios\",\"doi\":\"10.1109/CSICS.2017.8240466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes how the use of nanostructures can significantly increase the performance of GaN transistors. 100–400 nm fins have been defined underneath the gate electrode of AlGaN/GaN transistors to increase the gate modulation efficiency of these devices and to allow for the tuning of the threshold voltage. The proper design of these fins allows not only an improvement in the DC performance of the device, but also a significant enhancement of the rf linearity of the transistors. The excellent electron transport in these nanostructures, combined with the wide bandgap of GaN, its large effective mass and its moderate electric permittivity, also allows the potential scaling of GaN transistors below 5 nm channel length. The theoretical performance of these ultra-scaled devices is benchmarked with respect to other competing technologies.\",\"PeriodicalId\":129729,\"journal\":{\"name\":\"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2017.8240466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2017.8240466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了纳米结构如何显著提高氮化镓晶体管的性能。在AlGaN/GaN晶体管的栅极电极下定义了100 - 400nm的鳍片,以提高这些器件的栅极调制效率,并允许调整阈值电压。这些翅片的合理设计不仅可以改善器件的直流性能,还可以显著增强晶体管的射频线性度。这些纳米结构中优异的电子传递,结合GaN的宽带隙、大的有效质量和适中的介电常数,也允许GaN晶体管在5nm通道长度以下的潜在缩放。这些超大尺寸设备的理论性能是相对于其他竞争技术的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanostructured GaN transistors
This paper describes how the use of nanostructures can significantly increase the performance of GaN transistors. 100–400 nm fins have been defined underneath the gate electrode of AlGaN/GaN transistors to increase the gate modulation efficiency of these devices and to allow for the tuning of the threshold voltage. The proper design of these fins allows not only an improvement in the DC performance of the device, but also a significant enhancement of the rf linearity of the transistors. The excellent electron transport in these nanostructures, combined with the wide bandgap of GaN, its large effective mass and its moderate electric permittivity, also allows the potential scaling of GaN transistors below 5 nm channel length. The theoretical performance of these ultra-scaled devices is benchmarked with respect to other competing technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信