{"title":"多芯片模块内嵌入电流测量和振铃抑制技术","authors":"A. Lemmon, A. Shahabi","doi":"10.1109/IWIPP.2017.7936766","DOIUrl":null,"url":null,"abstract":"This paper introduces a technique for adding two complementary features to power electronics circuits based on multi-chip power modules: high-bandwidth current measurement and ringing suppression. The design of the “CT-snubber” device, which can be viewed as an extension of the traditional current transformer, incorporates an additional filter network which can be tuned to mitigate the undesirable parasitic-induced ringing of the type commonly observed in wide band-gap applications during high-edge-rate switching transients. Preliminary empirical results from a prototype CT-snubber designed as part of this effort indicate that this concept is viable both as a current measurement apparatus, as well as a means for improving the transient response of power electronics applications. Further, it is believed that this type of circuit could be readily integrated into the housing of multi-chip modules, thereby simultaneously realizing improved dynamic performance and in-situ current sensing suitable for application control.","PeriodicalId":164552,"journal":{"name":"2017 IEEE International Workshop On Integrated Power Packaging (IWIPP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Technique for embedding current measurement and ringing suppression within multichip modules\",\"authors\":\"A. Lemmon, A. Shahabi\",\"doi\":\"10.1109/IWIPP.2017.7936766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a technique for adding two complementary features to power electronics circuits based on multi-chip power modules: high-bandwidth current measurement and ringing suppression. The design of the “CT-snubber” device, which can be viewed as an extension of the traditional current transformer, incorporates an additional filter network which can be tuned to mitigate the undesirable parasitic-induced ringing of the type commonly observed in wide band-gap applications during high-edge-rate switching transients. Preliminary empirical results from a prototype CT-snubber designed as part of this effort indicate that this concept is viable both as a current measurement apparatus, as well as a means for improving the transient response of power electronics applications. Further, it is believed that this type of circuit could be readily integrated into the housing of multi-chip modules, thereby simultaneously realizing improved dynamic performance and in-situ current sensing suitable for application control.\",\"PeriodicalId\":164552,\"journal\":{\"name\":\"2017 IEEE International Workshop On Integrated Power Packaging (IWIPP)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop On Integrated Power Packaging (IWIPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWIPP.2017.7936766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop On Integrated Power Packaging (IWIPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWIPP.2017.7936766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Technique for embedding current measurement and ringing suppression within multichip modules
This paper introduces a technique for adding two complementary features to power electronics circuits based on multi-chip power modules: high-bandwidth current measurement and ringing suppression. The design of the “CT-snubber” device, which can be viewed as an extension of the traditional current transformer, incorporates an additional filter network which can be tuned to mitigate the undesirable parasitic-induced ringing of the type commonly observed in wide band-gap applications during high-edge-rate switching transients. Preliminary empirical results from a prototype CT-snubber designed as part of this effort indicate that this concept is viable both as a current measurement apparatus, as well as a means for improving the transient response of power electronics applications. Further, it is believed that this type of circuit could be readily integrated into the housing of multi-chip modules, thereby simultaneously realizing improved dynamic performance and in-situ current sensing suitable for application control.