Diana R. Palatnik, Noelia Rinaldoni, D. Corrales, M. L. Rolon, H. Montero, Germán F. Aranibar, M. L. Castells, N. Zaritzky, M. Campderrós
{"title":"低聚果糖功能性奶酪的研制","authors":"Diana R. Palatnik, Noelia Rinaldoni, D. Corrales, M. L. Rolon, H. Montero, Germán F. Aranibar, M. L. Castells, N. Zaritzky, M. Campderrós","doi":"10.5772/INTECHOPEN.85888","DOIUrl":null,"url":null,"abstract":"Cheese is a food of great consumption in the world; however, some aspects related to its fat content and the possibility of incorporating fiber represent interesting challenges for the dairy industry. In this sense, fructooligosaccharides (FOS), as inulin and agave fructans, exhibit valuable nutritional and functional attributes that can be used as supplements as soluble fiber or as macronutrient substitutes. In this chapter, the study of the development of soft and cream cheeses was performed to determine the operating conditions that allow obtaining products with beneficial health properties taking advantage of the characteristics of this carbohydrate. The skim milk was produced by ultrafiltration, and all the products were characterized physicochemically, including determinations of color, texture, and sensory analysis. The cheeses obtained were of high moisture, >45% (w/w), and reduced fat content (10–25% w/w), including a high protein concentration. The presence of fructans did not significantly modify the texture and appearance of the developed products, but its retention in the matrix was maximal in the case of spreadable cream cheeses containing inulin. Considering the health benefits of fructans and their abundance, this development could represent an innovation for dairy industry.","PeriodicalId":154423,"journal":{"name":"Handbook of Modern Dairy Science and Technology [Working Title]","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of Functional Cheeses with Fructooligosaccharides\",\"authors\":\"Diana R. Palatnik, Noelia Rinaldoni, D. Corrales, M. L. Rolon, H. Montero, Germán F. Aranibar, M. L. Castells, N. Zaritzky, M. Campderrós\",\"doi\":\"10.5772/INTECHOPEN.85888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cheese is a food of great consumption in the world; however, some aspects related to its fat content and the possibility of incorporating fiber represent interesting challenges for the dairy industry. In this sense, fructooligosaccharides (FOS), as inulin and agave fructans, exhibit valuable nutritional and functional attributes that can be used as supplements as soluble fiber or as macronutrient substitutes. In this chapter, the study of the development of soft and cream cheeses was performed to determine the operating conditions that allow obtaining products with beneficial health properties taking advantage of the characteristics of this carbohydrate. The skim milk was produced by ultrafiltration, and all the products were characterized physicochemically, including determinations of color, texture, and sensory analysis. The cheeses obtained were of high moisture, >45% (w/w), and reduced fat content (10–25% w/w), including a high protein concentration. The presence of fructans did not significantly modify the texture and appearance of the developed products, but its retention in the matrix was maximal in the case of spreadable cream cheeses containing inulin. Considering the health benefits of fructans and their abundance, this development could represent an innovation for dairy industry.\",\"PeriodicalId\":154423,\"journal\":{\"name\":\"Handbook of Modern Dairy Science and Technology [Working Title]\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Modern Dairy Science and Technology [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.85888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Modern Dairy Science and Technology [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Functional Cheeses with Fructooligosaccharides
Cheese is a food of great consumption in the world; however, some aspects related to its fat content and the possibility of incorporating fiber represent interesting challenges for the dairy industry. In this sense, fructooligosaccharides (FOS), as inulin and agave fructans, exhibit valuable nutritional and functional attributes that can be used as supplements as soluble fiber or as macronutrient substitutes. In this chapter, the study of the development of soft and cream cheeses was performed to determine the operating conditions that allow obtaining products with beneficial health properties taking advantage of the characteristics of this carbohydrate. The skim milk was produced by ultrafiltration, and all the products were characterized physicochemically, including determinations of color, texture, and sensory analysis. The cheeses obtained were of high moisture, >45% (w/w), and reduced fat content (10–25% w/w), including a high protein concentration. The presence of fructans did not significantly modify the texture and appearance of the developed products, but its retention in the matrix was maximal in the case of spreadable cream cheeses containing inulin. Considering the health benefits of fructans and their abundance, this development could represent an innovation for dairy industry.