Chandra Halim, H. Purnomo, T. Wahyono
{"title":"ANALISIS PENGELOMPOKAN WILAYAH PENYEBARAN COVID-19 di INDONESIA DENGAN METODE CLUSTERING MENGGUNAKAN ALGORITMA K-MEANS dan K-MEDOIDS","authors":"Chandra Halim, H. Purnomo, T. Wahyono","doi":"10.35314/isi.v7i2.2566","DOIUrl":null,"url":null,"abstract":"Abstrack - Corona virus is a disease that attacks human respiratory tract infections that are generally mild, such as flu and cough. If not treated quickly will result in death. This virus is quickly transmitted from human to human through the air and in contact. To reduce the spread of the virus, it requires clustering using the K-Means and K-Medoids algorithm, this method works to partition objects into groups. The clustering was obtained based on data on total cases, total deaths and total cures. Based on the results of this study, the K-Means algorithm is more optimal than the K-Medoids in clustering regions in Indonesia. It is proven that the best value of the Davies Bouldin Index from the K-Means algorithm is 0.158 with k = 4 and the K-Medoids algorithm is 0.806 with k = 5. The results of clustering are based on the most optimal value, namely the K-Means algorithm, showing cluster 1 Central Java and Java. East is at the top due to high case and death rates.","PeriodicalId":354905,"journal":{"name":"INOVTEK Polbeng - Seri Informatika","volume":"46 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INOVTEK Polbeng - Seri Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35314/isi.v7i2.2566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要-冠状病毒是一种攻击人类呼吸道感染的疾病,通常是轻微的,如流感和咳嗽。如果不及时治疗会导致死亡。这种病毒通过空气和接触在人与人之间迅速传播。为了减少病毒的传播,需要使用K-Means和K-Medoids算法进行聚类,该方法将对象划分为组。聚类是根据总病例、总死亡和总治愈的数据得出的。基于本研究的结果,在印度尼西亚的聚类区域,K-Means算法比K-Medoids算法更优。证明了k - means算法在k = 4时Davies Bouldin Index的最佳值为0.158,k - medoids算法在k = 5时Davies Bouldin Index的最佳值为0.806。聚类结果基于最优值,即K-Means算法,显示聚类1 Central Java和Java。东部因高发病率和高死亡率而位居榜首。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALISIS PENGELOMPOKAN WILAYAH PENYEBARAN COVID-19 di INDONESIA DENGAN METODE CLUSTERING MENGGUNAKAN ALGORITMA K-MEANS dan K-MEDOIDS
Abstrack - Corona virus is a disease that attacks human respiratory tract infections that are generally mild, such as flu and cough. If not treated quickly will result in death. This virus is quickly transmitted from human to human through the air and in contact. To reduce the spread of the virus, it requires clustering using the K-Means and K-Medoids algorithm, this method works to partition objects into groups. The clustering was obtained based on data on total cases, total deaths and total cures. Based on the results of this study, the K-Means algorithm is more optimal than the K-Medoids in clustering regions in Indonesia. It is proven that the best value of the Davies Bouldin Index from the K-Means algorithm is 0.158 with k = 4 and the K-Medoids algorithm is 0.806 with k = 5. The results of clustering are based on the most optimal value, namely the K-Means algorithm, showing cluster 1 Central Java and Java. East is at the top due to high case and death rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信