{"title":"智能电源ESD保护失效电流预测的高效TCAD方法","authors":"C. Salamero, N. Nolhier, M. Bafleur, P. Besse","doi":"10.1109/ISPSD.2005.1487964","DOIUrl":null,"url":null,"abstract":"This work deals with a method to predict ESD protection robustness with TCAD simulations. Tested on different devices and two smart power technologies, the results are validated with electrical measurement and failure analysis. Failure current is always predicted with a good accuracy compared to technology spreading. In addition, the methodology provides a significant simulation time speedup compared to classical methods based on a temperature criterion.","PeriodicalId":154808,"journal":{"name":"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Efficient TCAD methodology for ESD failure current prediction of smart power ESD protection\",\"authors\":\"C. Salamero, N. Nolhier, M. Bafleur, P. Besse\",\"doi\":\"10.1109/ISPSD.2005.1487964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with a method to predict ESD protection robustness with TCAD simulations. Tested on different devices and two smart power technologies, the results are validated with electrical measurement and failure analysis. Failure current is always predicted with a good accuracy compared to technology spreading. In addition, the methodology provides a significant simulation time speedup compared to classical methods based on a temperature criterion.\",\"PeriodicalId\":154808,\"journal\":{\"name\":\"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2005.1487964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2005.1487964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient TCAD methodology for ESD failure current prediction of smart power ESD protection
This work deals with a method to predict ESD protection robustness with TCAD simulations. Tested on different devices and two smart power technologies, the results are validated with electrical measurement and failure analysis. Failure current is always predicted with a good accuracy compared to technology spreading. In addition, the methodology provides a significant simulation time speedup compared to classical methods based on a temperature criterion.