跨边缘设备和云的分布式数据流最优调度算法

G. J, Jayalakshmi D S, Ritu Pravakar, P. D. Naik, S. Sirisha Reddy
{"title":"跨边缘设备和云的分布式数据流最优调度算法","authors":"G. J, Jayalakshmi D S, Ritu Pravakar, P. D. Naik, S. Sirisha Reddy","doi":"10.1109/CONECCT50063.2020.9198674","DOIUrl":null,"url":null,"abstract":"Edge computing is an emerging paradigm to assist intelligent decisions for cloud centric analytics. The major limitation of edge computing is the non-availability of a open-source platforms-as-a- service for various applications across cloud and edge. ECHO(an adaptive orchestration platform for streaming hybrid data flows across cloud and edge) attempts to fill this gap . It enables streaming data flows across distributed resources where user tasks are represented as vertices in a directed acyclic graph (DAG) and edges represent the routing channels between data and tasks. These DAGs are executed upon data arrival. ECHO’s current scheduler schedules jobs using round robin algorithm. This paper proposes improvement in ECHO’s scheduler. We consider current device health before scheduling dataflow in ECHO. The proposed scheduling algorithm makes use of CPU utilization and memory utilization as parameters. The experimental results show that the proposed algorithm improves the scheduler performance.","PeriodicalId":261794,"journal":{"name":"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Scheduling Algorithm for Distributed Streaming of Data Flow across Edge Devices and Cloud\",\"authors\":\"G. J, Jayalakshmi D S, Ritu Pravakar, P. D. Naik, S. Sirisha Reddy\",\"doi\":\"10.1109/CONECCT50063.2020.9198674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing is an emerging paradigm to assist intelligent decisions for cloud centric analytics. The major limitation of edge computing is the non-availability of a open-source platforms-as-a- service for various applications across cloud and edge. ECHO(an adaptive orchestration platform for streaming hybrid data flows across cloud and edge) attempts to fill this gap . It enables streaming data flows across distributed resources where user tasks are represented as vertices in a directed acyclic graph (DAG) and edges represent the routing channels between data and tasks. These DAGs are executed upon data arrival. ECHO’s current scheduler schedules jobs using round robin algorithm. This paper proposes improvement in ECHO’s scheduler. We consider current device health before scheduling dataflow in ECHO. The proposed scheduling algorithm makes use of CPU utilization and memory utilization as parameters. The experimental results show that the proposed algorithm improves the scheduler performance.\",\"PeriodicalId\":261794,\"journal\":{\"name\":\"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONECCT50063.2020.9198674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT50063.2020.9198674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

边缘计算是一种新兴的范例,用于协助以云为中心的分析的智能决策。边缘计算的主要限制是无法为跨云和边缘的各种应用程序提供开源平台即服务。ECHO(一个用于跨云和边缘流混合数据流的自适应编排平台)试图填补这一空白。它支持跨分布式资源的流数据流,其中用户任务表示为有向无环图(DAG)中的顶点,边表示数据和任务之间的路由通道。这些dag在数据到达时执行。ECHO当前的调度程序使用轮询算法调度作业。本文提出了对ECHO调度程序的改进。我们在调度ECHO中的数据流之前考虑当前设备的健康状况。提出的调度算法以CPU利用率和内存利用率为参数。实验结果表明,该算法提高了调度程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Scheduling Algorithm for Distributed Streaming of Data Flow across Edge Devices and Cloud
Edge computing is an emerging paradigm to assist intelligent decisions for cloud centric analytics. The major limitation of edge computing is the non-availability of a open-source platforms-as-a- service for various applications across cloud and edge. ECHO(an adaptive orchestration platform for streaming hybrid data flows across cloud and edge) attempts to fill this gap . It enables streaming data flows across distributed resources where user tasks are represented as vertices in a directed acyclic graph (DAG) and edges represent the routing channels between data and tasks. These DAGs are executed upon data arrival. ECHO’s current scheduler schedules jobs using round robin algorithm. This paper proposes improvement in ECHO’s scheduler. We consider current device health before scheduling dataflow in ECHO. The proposed scheduling algorithm makes use of CPU utilization and memory utilization as parameters. The experimental results show that the proposed algorithm improves the scheduler performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信