Z. Poole, P. Ohodnicki, Rongzhang Chen, Yuankun Lin, Kevin P. Chen
{"title":"三维亚波长折射率调整金属氧化物在光学传感中的应用","authors":"Z. Poole, P. Ohodnicki, Rongzhang Chen, Yuankun Lin, Kevin P. Chen","doi":"10.1109/NANO.2014.6968070","DOIUrl":null,"url":null,"abstract":"We present a refractive index engineering scheme for functional metal oxides (SnO2, ZnO, TiO2) by the method of sub-wavelength engineering on the 10-50nm scale for applications in optical sensing. The method employed is based on templating by a triblock copolymer Pluronic F-127 for the manufacture of controllable 3D sub-wavelength nanostructures. By this method we demonstrate that the refractive indices of functional metal oxides can be altered substantially from their nominal value of ≥ 2 to be as low as 1.25.","PeriodicalId":367660,"journal":{"name":"14th IEEE International Conference on Nanotechnology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D sub-wavelength refractive index adjusted metal oxides for applications in optical sensing\",\"authors\":\"Z. Poole, P. Ohodnicki, Rongzhang Chen, Yuankun Lin, Kevin P. Chen\",\"doi\":\"10.1109/NANO.2014.6968070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a refractive index engineering scheme for functional metal oxides (SnO2, ZnO, TiO2) by the method of sub-wavelength engineering on the 10-50nm scale for applications in optical sensing. The method employed is based on templating by a triblock copolymer Pluronic F-127 for the manufacture of controllable 3D sub-wavelength nanostructures. By this method we demonstrate that the refractive indices of functional metal oxides can be altered substantially from their nominal value of ≥ 2 to be as low as 1.25.\",\"PeriodicalId\":367660,\"journal\":{\"name\":\"14th IEEE International Conference on Nanotechnology\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2014.6968070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2014.6968070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D sub-wavelength refractive index adjusted metal oxides for applications in optical sensing
We present a refractive index engineering scheme for functional metal oxides (SnO2, ZnO, TiO2) by the method of sub-wavelength engineering on the 10-50nm scale for applications in optical sensing. The method employed is based on templating by a triblock copolymer Pluronic F-127 for the manufacture of controllable 3D sub-wavelength nanostructures. By this method we demonstrate that the refractive indices of functional metal oxides can be altered substantially from their nominal value of ≥ 2 to be as low as 1.25.