用扫描频率梳状显微镜研究半导体载流子谱的扫描隧道显微镜的研制

Greg Spencer, M. Hagmann
{"title":"用扫描频率梳状显微镜研究半导体载流子谱的扫描隧道显微镜的研制","authors":"Greg Spencer, M. Hagmann","doi":"10.1109/WMED.2017.7916926","DOIUrl":null,"url":null,"abstract":"Summary form only given. We are developing a scanning tunneling microscope that is portable and optimized for scanning frequency comb microscopy (SFCM) as one part of our effort to complete a prototype for the carrier profiling of semiconductors by SFCM. Conventional integral or integral plus proportion feedback control of the tunneling current in a scanning tunneling microscope (STM) is satisfactory once tunneling has been established but may cause tip-crash by integral windup during coarse approach. In tip-sample contact images with atomic-resolution may be obtained but the microwave frequency comb ceases because there is no optical rectification and scanning tunneling spectroscopy also fails. We are studying a new control algorithm based on approximating the tunneling current as a polynomial in the bias voltage where the coefficients in this polynomial are not required. It is noted that hanges in the apparatus, as well as the algorithms used for feedback control in the STM, are required to optimize this instrument for measuring the microwave frequency comb.","PeriodicalId":287760,"journal":{"name":"2017 IEEE Workshop on Microelectronics and Electron Devices (WMED)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a scanning tunneling microscope for the carrier profiling of semiconductors by scanning frequency comb microscopy\",\"authors\":\"Greg Spencer, M. Hagmann\",\"doi\":\"10.1109/WMED.2017.7916926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. We are developing a scanning tunneling microscope that is portable and optimized for scanning frequency comb microscopy (SFCM) as one part of our effort to complete a prototype for the carrier profiling of semiconductors by SFCM. Conventional integral or integral plus proportion feedback control of the tunneling current in a scanning tunneling microscope (STM) is satisfactory once tunneling has been established but may cause tip-crash by integral windup during coarse approach. In tip-sample contact images with atomic-resolution may be obtained but the microwave frequency comb ceases because there is no optical rectification and scanning tunneling spectroscopy also fails. We are studying a new control algorithm based on approximating the tunneling current as a polynomial in the bias voltage where the coefficients in this polynomial are not required. It is noted that hanges in the apparatus, as well as the algorithms used for feedback control in the STM, are required to optimize this instrument for measuring the microwave frequency comb.\",\"PeriodicalId\":287760,\"journal\":{\"name\":\"2017 IEEE Workshop on Microelectronics and Electron Devices (WMED)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Workshop on Microelectronics and Electron Devices (WMED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMED.2017.7916926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Workshop on Microelectronics and Electron Devices (WMED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMED.2017.7916926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。我们正在开发一种便携式扫描隧道显微镜,并对扫描频率梳显微镜(SFCM)进行了优化,作为我们完成SFCM半导体载流子分析原型的一部分。在扫描隧道显微镜(STM)中,隧道电流的传统积分或积分加比例反馈控制在隧道建立后是令人满意的,但在粗进近过程中,积分绕组可能导致尖顶崩溃。在尖端样品中可以获得原子分辨率的接触图像,但由于没有光学整流,微波频率梳停止,扫描隧道光谱也失败。我们正在研究一种新的控制算法,该算法基于将隧道电流近似为偏置电压的多项式,而该多项式中的系数是不需要的。值得注意的是,需要改变仪器,以及用于STM反馈控制的算法,以优化该仪器以测量微波频率梳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a scanning tunneling microscope for the carrier profiling of semiconductors by scanning frequency comb microscopy
Summary form only given. We are developing a scanning tunneling microscope that is portable and optimized for scanning frequency comb microscopy (SFCM) as one part of our effort to complete a prototype for the carrier profiling of semiconductors by SFCM. Conventional integral or integral plus proportion feedback control of the tunneling current in a scanning tunneling microscope (STM) is satisfactory once tunneling has been established but may cause tip-crash by integral windup during coarse approach. In tip-sample contact images with atomic-resolution may be obtained but the microwave frequency comb ceases because there is no optical rectification and scanning tunneling spectroscopy also fails. We are studying a new control algorithm based on approximating the tunneling current as a polynomial in the bias voltage where the coefficients in this polynomial are not required. It is noted that hanges in the apparatus, as well as the algorithms used for feedback control in the STM, are required to optimize this instrument for measuring the microwave frequency comb.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信