基于取证的调查算法和基于密度峰的模糊聚类相结合的自定义分割

T. Nguyen
{"title":"基于取证的调查算法和基于密度峰的模糊聚类相结合的自定义分割","authors":"T. Nguyen","doi":"10.31130/ud-jst.2023.081e","DOIUrl":null,"url":null,"abstract":"Custom segmentation is a process of classifying potential customers based on their mutual features such as shopping habits, consumption trends, and demand to provide an effective marketing campaign for each customer group. Data clustering is one of the most common methods for custom segmentation. This study proposed a novel clustering method that employs density peak-based fuzzy c-means (DP-FCM) and forensic-based investigation (FBI) algorithms. The proposed method (denoted as DP-FBI-FCM) aims to provide an effective clustering technique that can exploit the global optimal solution for custom segmentation problems. Besides, the proposed DP-FBI-FCM is used to segment wholesale customer data of a supermarket. As a result, four distinct customer groups are classified. Businesses can implement different strategies in each cluster to retain and attract their customers.","PeriodicalId":262140,"journal":{"name":"Journal of Science and Technology Issue on Information and Communications Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combination of forensic-based investigation algorithm and density peak-based fuzzy clustering for custom segmentation\",\"authors\":\"T. Nguyen\",\"doi\":\"10.31130/ud-jst.2023.081e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Custom segmentation is a process of classifying potential customers based on their mutual features such as shopping habits, consumption trends, and demand to provide an effective marketing campaign for each customer group. Data clustering is one of the most common methods for custom segmentation. This study proposed a novel clustering method that employs density peak-based fuzzy c-means (DP-FCM) and forensic-based investigation (FBI) algorithms. The proposed method (denoted as DP-FBI-FCM) aims to provide an effective clustering technique that can exploit the global optimal solution for custom segmentation problems. Besides, the proposed DP-FBI-FCM is used to segment wholesale customer data of a supermarket. As a result, four distinct customer groups are classified. Businesses can implement different strategies in each cluster to retain and attract their customers.\",\"PeriodicalId\":262140,\"journal\":{\"name\":\"Journal of Science and Technology Issue on Information and Communications Technology\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Technology Issue on Information and Communications Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31130/ud-jst.2023.081e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology Issue on Information and Communications Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31130/ud-jst.2023.081e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

客户细分是根据潜在客户的共同特征,如购物习惯、消费趋势和需求,对潜在客户进行分类,为每个客户群提供有效的营销活动的过程。数据聚类是最常用的自定义分割方法之一。本文提出了一种基于密度峰的模糊c均值(DP-FCM)和基于取证的调查(FBI)算法的聚类方法。提出的方法(表示为DP-FBI-FCM)旨在提供一种有效的聚类技术,可以为自定义分割问题提供全局最优解。此外,将所提出的DP-FBI-FCM用于超市批发客户数据的分割。因此,划分了四个不同的客户群体。企业可以在每个集群中实施不同的策略来保留和吸引客户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A combination of forensic-based investigation algorithm and density peak-based fuzzy clustering for custom segmentation
Custom segmentation is a process of classifying potential customers based on their mutual features such as shopping habits, consumption trends, and demand to provide an effective marketing campaign for each customer group. Data clustering is one of the most common methods for custom segmentation. This study proposed a novel clustering method that employs density peak-based fuzzy c-means (DP-FCM) and forensic-based investigation (FBI) algorithms. The proposed method (denoted as DP-FBI-FCM) aims to provide an effective clustering technique that can exploit the global optimal solution for custom segmentation problems. Besides, the proposed DP-FBI-FCM is used to segment wholesale customer data of a supermarket. As a result, four distinct customer groups are classified. Businesses can implement different strategies in each cluster to retain and attract their customers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信