{"title":"计算机生成的流排序网络","authors":"M. Zuluaga, Peter Milder, Markus Püschel","doi":"10.1145/2228360.2228588","DOIUrl":null,"url":null,"abstract":"Sorting networks offer great performance but become prohibitively expensive for large data sets. We present a domain-specific language and compiler to automatically generate hardware implementations of sorting networks with reduced area and optimized for latency or throughput. Our results show that the generator produces a wide range of Pareto-optimal solutions that both compete with and outperform prior sorting hardware.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Computer generation of streaming sorting networks\",\"authors\":\"M. Zuluaga, Peter Milder, Markus Püschel\",\"doi\":\"10.1145/2228360.2228588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sorting networks offer great performance but become prohibitively expensive for large data sets. We present a domain-specific language and compiler to automatically generate hardware implementations of sorting networks with reduced area and optimized for latency or throughput. Our results show that the generator produces a wide range of Pareto-optimal solutions that both compete with and outperform prior sorting hardware.\",\"PeriodicalId\":263599,\"journal\":{\"name\":\"DAC Design Automation Conference 2012\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAC Design Automation Conference 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2228360.2228588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sorting networks offer great performance but become prohibitively expensive for large data sets. We present a domain-specific language and compiler to automatically generate hardware implementations of sorting networks with reduced area and optimized for latency or throughput. Our results show that the generator produces a wide range of Pareto-optimal solutions that both compete with and outperform prior sorting hardware.