{"title":"17x可靠性增强LDPC码与突发错误掩蔽和高精度LLR高可靠的固态驱动器与TLC NAND闪存","authors":"Tsukasa Tokutomi, K. Takeuchi","doi":"10.1109/IMW.2016.7493561","DOIUrl":null,"url":null,"abstract":"Highly reliable LDPC ECC is introduced to improve the reliability of solid-state drives (SSDs). Although conventional AEP-LDPC ECC [3] is 12x highly reliable than BCH ECC, its error-correction capability is degraded due to the burst-errors and inaccurate log- likelihood ratio (LLR). To improve the reliability of TLC NAND flash, this paper proposes the burst-error masking (BEM) and program-disturb merged LLR estimation (PMLE). The first proposal, BEM eliminates the burst- errors by recording the error-location to the table. The second proposal, PMLE calculates the ratio of program-disturb errors to data-retention errors. As a result, more precise LLR is obtained. By combining BEM and PMLE, the SSD lifetime is extended by 17x and the table size overhead is reduced by 81%.","PeriodicalId":365759,"journal":{"name":"2016 IEEE 8th International Memory Workshop (IMW)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"17x Reliability Enhanced LDPC Code with Burst-Error Masking and High-Precision LLR for Highly Reliable Solid-State-Drives with TLC NAND Flash Memory\",\"authors\":\"Tsukasa Tokutomi, K. Takeuchi\",\"doi\":\"10.1109/IMW.2016.7493561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly reliable LDPC ECC is introduced to improve the reliability of solid-state drives (SSDs). Although conventional AEP-LDPC ECC [3] is 12x highly reliable than BCH ECC, its error-correction capability is degraded due to the burst-errors and inaccurate log- likelihood ratio (LLR). To improve the reliability of TLC NAND flash, this paper proposes the burst-error masking (BEM) and program-disturb merged LLR estimation (PMLE). The first proposal, BEM eliminates the burst- errors by recording the error-location to the table. The second proposal, PMLE calculates the ratio of program-disturb errors to data-retention errors. As a result, more precise LLR is obtained. By combining BEM and PMLE, the SSD lifetime is extended by 17x and the table size overhead is reduced by 81%.\",\"PeriodicalId\":365759,\"journal\":{\"name\":\"2016 IEEE 8th International Memory Workshop (IMW)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 8th International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW.2016.7493561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 8th International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2016.7493561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
17x Reliability Enhanced LDPC Code with Burst-Error Masking and High-Precision LLR for Highly Reliable Solid-State-Drives with TLC NAND Flash Memory
Highly reliable LDPC ECC is introduced to improve the reliability of solid-state drives (SSDs). Although conventional AEP-LDPC ECC [3] is 12x highly reliable than BCH ECC, its error-correction capability is degraded due to the burst-errors and inaccurate log- likelihood ratio (LLR). To improve the reliability of TLC NAND flash, this paper proposes the burst-error masking (BEM) and program-disturb merged LLR estimation (PMLE). The first proposal, BEM eliminates the burst- errors by recording the error-location to the table. The second proposal, PMLE calculates the ratio of program-disturb errors to data-retention errors. As a result, more precise LLR is obtained. By combining BEM and PMLE, the SSD lifetime is extended by 17x and the table size overhead is reduced by 81%.