基于多尺度Gabor自卷积的仿射归一化不变特征提取

A. Ali, S. Gilani
{"title":"基于多尺度Gabor自卷积的仿射归一化不变特征提取","authors":"A. Ali, S. Gilani","doi":"10.1109/ICET.2006.335925","DOIUrl":null,"url":null,"abstract":"The paper presents a hybrid technique for affine invariant feature extraction with the view of object recognition. The proposed technique first normalizes an input image by removing affine distortions from it and then spatially re-samples the affine normalized image across multiple scales, next the Gabor transform is computed for the resampled images over different frequencies and orientations. Finally autoconvolution is performed in the transformed domain to generate a set of 384 invariants. Experimental results conducted using four different standard datasets confirm the validity of the proposed approach. Beside this the error rates obtained in terms of invariant stability are significantly lower when compared to Fourier based MSA, which has proven itself to be better than moment invariants","PeriodicalId":238541,"journal":{"name":"2006 International Conference on Emerging Technologies","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine Normalized Invariant Feature Extraction using Multiscale Gabor Autoconvolution\",\"authors\":\"A. Ali, S. Gilani\",\"doi\":\"10.1109/ICET.2006.335925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a hybrid technique for affine invariant feature extraction with the view of object recognition. The proposed technique first normalizes an input image by removing affine distortions from it and then spatially re-samples the affine normalized image across multiple scales, next the Gabor transform is computed for the resampled images over different frequencies and orientations. Finally autoconvolution is performed in the transformed domain to generate a set of 384 invariants. Experimental results conducted using four different standard datasets confirm the validity of the proposed approach. Beside this the error rates obtained in terms of invariant stability are significantly lower when compared to Fourier based MSA, which has proven itself to be better than moment invariants\",\"PeriodicalId\":238541,\"journal\":{\"name\":\"2006 International Conference on Emerging Technologies\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2006.335925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2006.335925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从目标识别的角度出发,提出了一种混合仿射不变特征提取技术。该技术首先通过去除输入图像的仿射畸变对其进行归一化,然后跨多个尺度对仿射归一化图像进行空间重采样,然后对重采样图像在不同频率和方向上进行Gabor变换计算。最后在变换域进行自卷积,生成384个不变量。使用四种不同的标准数据集进行的实验结果证实了所提出方法的有效性。除此之外,与基于傅里叶的MSA相比,在不变量稳定性方面获得的错误率显着降低,这已被证明比矩不变量更好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine Normalized Invariant Feature Extraction using Multiscale Gabor Autoconvolution
The paper presents a hybrid technique for affine invariant feature extraction with the view of object recognition. The proposed technique first normalizes an input image by removing affine distortions from it and then spatially re-samples the affine normalized image across multiple scales, next the Gabor transform is computed for the resampled images over different frequencies and orientations. Finally autoconvolution is performed in the transformed domain to generate a set of 384 invariants. Experimental results conducted using four different standard datasets confirm the validity of the proposed approach. Beside this the error rates obtained in terms of invariant stability are significantly lower when compared to Fourier based MSA, which has proven itself to be better than moment invariants
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信