B. Tsui, Ko-Chin Chang, B. Shew, Heng-Yuan Lee, M. Tsai
{"title":"HfO2电阻式随机存取存储器辐射硬度的研究","authors":"B. Tsui, Ko-Chin Chang, B. Shew, Heng-Yuan Lee, M. Tsai","doi":"10.1109/VLSI-TSA.2014.6839675","DOIUrl":null,"url":null,"abstract":"Radiation hardness of HfO2-based resistive random-access memory (RRAM) is investigated using extreme ultra-violet (EUV) and X-ray as radiation source. The low-resistance state (LRS) is immune to irradiation, but temporary change of the high-resistance state (HRS) and endurance degradation could be observed at high total irradiation dose (TID). A physical model is proposed to explain these observations. It is concluded that the HfO2-based RRAM can be operated in high radiation environment, and EUV can be use to fabricate high-density RRAM array.","PeriodicalId":403085,"journal":{"name":"Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Investigation of radiation hardness of HfO2 resistive random access memory\",\"authors\":\"B. Tsui, Ko-Chin Chang, B. Shew, Heng-Yuan Lee, M. Tsai\",\"doi\":\"10.1109/VLSI-TSA.2014.6839675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiation hardness of HfO2-based resistive random-access memory (RRAM) is investigated using extreme ultra-violet (EUV) and X-ray as radiation source. The low-resistance state (LRS) is immune to irradiation, but temporary change of the high-resistance state (HRS) and endurance degradation could be observed at high total irradiation dose (TID). A physical model is proposed to explain these observations. It is concluded that the HfO2-based RRAM can be operated in high radiation environment, and EUV can be use to fabricate high-density RRAM array.\",\"PeriodicalId\":403085,\"journal\":{\"name\":\"Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI-TSA.2014.6839675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-TSA.2014.6839675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of radiation hardness of HfO2 resistive random access memory
Radiation hardness of HfO2-based resistive random-access memory (RRAM) is investigated using extreme ultra-violet (EUV) and X-ray as radiation source. The low-resistance state (LRS) is immune to irradiation, but temporary change of the high-resistance state (HRS) and endurance degradation could be observed at high total irradiation dose (TID). A physical model is proposed to explain these observations. It is concluded that the HfO2-based RRAM can be operated in high radiation environment, and EUV can be use to fabricate high-density RRAM array.