基于统一潮流模型的电-热-气集成系统异常状态识别方法

Bingchen Jiang, Danlei Zhu
{"title":"基于统一潮流模型的电-热-气集成系统异常状态识别方法","authors":"Bingchen Jiang, Danlei Zhu","doi":"10.1109/CEECT50755.2020.9298586","DOIUrl":null,"url":null,"abstract":"Tight coupling between different energy systems makes state analysis of multi-energy integrated systems difficult. From the perspective of data-driven, this paper proposes an anomaly state identification method for power-heat-gas integrated system based on unified power flow model. First, establish a unified power flow model of the power-heat-gas integrated system. Then, using the random matrix theory in big data technology, the historical data and real-time data of the state quantity in the unified power flow model form a random matrix. Finally, the M-P law and the ring law in the random matrix theory are used to qualitatively analyze the system operation. The simulation results verify that the method does not need to identify the physical structure of the system, which provides a new idea for the abnormal state recognition of the power-heat-gas integrated system.","PeriodicalId":115174,"journal":{"name":"2020 International Conference on Electrical Engineering and Control Technologies (CEECT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormal state recognition method for power-heatgas integrated system based on unified power flow model\",\"authors\":\"Bingchen Jiang, Danlei Zhu\",\"doi\":\"10.1109/CEECT50755.2020.9298586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tight coupling between different energy systems makes state analysis of multi-energy integrated systems difficult. From the perspective of data-driven, this paper proposes an anomaly state identification method for power-heat-gas integrated system based on unified power flow model. First, establish a unified power flow model of the power-heat-gas integrated system. Then, using the random matrix theory in big data technology, the historical data and real-time data of the state quantity in the unified power flow model form a random matrix. Finally, the M-P law and the ring law in the random matrix theory are used to qualitatively analyze the system operation. The simulation results verify that the method does not need to identify the physical structure of the system, which provides a new idea for the abnormal state recognition of the power-heat-gas integrated system.\",\"PeriodicalId\":115174,\"journal\":{\"name\":\"2020 International Conference on Electrical Engineering and Control Technologies (CEECT)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Electrical Engineering and Control Technologies (CEECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEECT50755.2020.9298586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electrical Engineering and Control Technologies (CEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEECT50755.2020.9298586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不同能量系统之间的紧密耦合给多能集成系统的状态分析带来困难。从数据驱动的角度出发,提出了一种基于统一潮流模型的电-热-气集成系统异常状态识别方法。首先,建立统一的电-热-气集成系统潮流模型。然后,利用大数据技术中的随机矩阵理论,将统一潮流模型中状态量的历史数据和实时数据组成一个随机矩阵。最后,利用随机矩阵理论中的M-P定律和环定律对系统运行进行定性分析。仿真结果验证了该方法不需要识别系统的物理结构,为电-热-气集成系统的异常状态识别提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal state recognition method for power-heatgas integrated system based on unified power flow model
Tight coupling between different energy systems makes state analysis of multi-energy integrated systems difficult. From the perspective of data-driven, this paper proposes an anomaly state identification method for power-heat-gas integrated system based on unified power flow model. First, establish a unified power flow model of the power-heat-gas integrated system. Then, using the random matrix theory in big data technology, the historical data and real-time data of the state quantity in the unified power flow model form a random matrix. Finally, the M-P law and the ring law in the random matrix theory are used to qualitatively analyze the system operation. The simulation results verify that the method does not need to identify the physical structure of the system, which provides a new idea for the abnormal state recognition of the power-heat-gas integrated system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信