采用浮动中性点的三相饱和铁心故障限流器性能

P. Commins, J. Moscrop
{"title":"采用浮动中性点的三相饱和铁心故障限流器性能","authors":"P. Commins, J. Moscrop","doi":"10.1109/EPEC.2012.6474960","DOIUrl":null,"url":null,"abstract":"High power demands in electricity grids are continually increasing. This increasing trend coupled with the introduction of renewable energy sources, which require energy storage devices, poses significant problems to fault current levels. To improve network availability and grid resilience, superconducting saturated core Fault Current Limiters (FCL) are a suitable solution to reduce high fault currents in distribution level electricity grids. These devices have the characteristic of low impedance to the network during normal operation and high impedance during a fault event. However, this change in impedance is nonlinear and can lead to an imbalance in a three phase saturated core FCL. In this paper, the effects on fault current limiting performance due to the unbalanced instantaneous impedance between the 3 phases are investigated. The FCL fault transients of a grounded fault and a floating fault are simulated and compared using Finite Element Analysis (FEA) techniques. The presented results are also validated against a real world distribution level saturated core FCL under high power testing.","PeriodicalId":118103,"journal":{"name":"2012 IEEE Electrical Power and Energy Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Three phase saturated core fault current limiter performance with a floating neutral\",\"authors\":\"P. Commins, J. Moscrop\",\"doi\":\"10.1109/EPEC.2012.6474960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High power demands in electricity grids are continually increasing. This increasing trend coupled with the introduction of renewable energy sources, which require energy storage devices, poses significant problems to fault current levels. To improve network availability and grid resilience, superconducting saturated core Fault Current Limiters (FCL) are a suitable solution to reduce high fault currents in distribution level electricity grids. These devices have the characteristic of low impedance to the network during normal operation and high impedance during a fault event. However, this change in impedance is nonlinear and can lead to an imbalance in a three phase saturated core FCL. In this paper, the effects on fault current limiting performance due to the unbalanced instantaneous impedance between the 3 phases are investigated. The FCL fault transients of a grounded fault and a floating fault are simulated and compared using Finite Element Analysis (FEA) techniques. The presented results are also validated against a real world distribution level saturated core FCL under high power testing.\",\"PeriodicalId\":118103,\"journal\":{\"name\":\"2012 IEEE Electrical Power and Energy Conference\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Electrical Power and Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEC.2012.6474960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Electrical Power and Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2012.6474960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

电网的高功率需求不断增加。这种增加的趋势加上可再生能源的引入,这需要能量存储设备,对故障电流水平提出了重大问题。为了提高电网的可用性和电网的恢复能力,超导饱和铁芯故障限流器(FCL)是降低配电网高故障电流的一种合适的解决方案。这些设备在正常运行时对网络具有低阻抗,在故障事件时具有高阻抗的特点。然而,这种阻抗变化是非线性的,可能导致三相饱和铁芯FCL的不平衡。本文研究了三相间瞬时阻抗不平衡对故障限流性能的影响。采用有限元分析方法,对接地故障和浮式故障的FCL故障暂态进行了模拟和比较。本文的结果也在高功率测试下的真实分布水平饱和堆芯FCL中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three phase saturated core fault current limiter performance with a floating neutral
High power demands in electricity grids are continually increasing. This increasing trend coupled with the introduction of renewable energy sources, which require energy storage devices, poses significant problems to fault current levels. To improve network availability and grid resilience, superconducting saturated core Fault Current Limiters (FCL) are a suitable solution to reduce high fault currents in distribution level electricity grids. These devices have the characteristic of low impedance to the network during normal operation and high impedance during a fault event. However, this change in impedance is nonlinear and can lead to an imbalance in a three phase saturated core FCL. In this paper, the effects on fault current limiting performance due to the unbalanced instantaneous impedance between the 3 phases are investigated. The FCL fault transients of a grounded fault and a floating fault are simulated and compared using Finite Element Analysis (FEA) techniques. The presented results are also validated against a real world distribution level saturated core FCL under high power testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信