前馈和递归神经网络的容错实现

P. Franzon, D. van den Bout, J. Paulos, T. Miller, W. Snyder, T. Nagle, Wentai Liu
{"title":"前馈和递归神经网络的容错实现","authors":"P. Franzon, D. van den Bout, J. Paulos, T. Miller, W. Snyder, T. Nagle, Wentai Liu","doi":"10.1109/ICWSI.1990.63897","DOIUrl":null,"url":null,"abstract":"Many of the defect tolerant techniques employed to achieve wafer-scale integration can also be used to construct flexible and scalable architectures. These techniques are applied to two artificial neural networks: a feed-forward analog network with backpropagation and an efficient digital recurrent network.<<ETX>>","PeriodicalId":206140,"journal":{"name":"1990 Proceedings. International Conference on Wafer Scale Integration","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Defect tolerant implementations of feed-forward and recurrent neural networks\",\"authors\":\"P. Franzon, D. van den Bout, J. Paulos, T. Miller, W. Snyder, T. Nagle, Wentai Liu\",\"doi\":\"10.1109/ICWSI.1990.63897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many of the defect tolerant techniques employed to achieve wafer-scale integration can also be used to construct flexible and scalable architectures. These techniques are applied to two artificial neural networks: a feed-forward analog network with backpropagation and an efficient digital recurrent network.<<ETX>>\",\"PeriodicalId\":206140,\"journal\":{\"name\":\"1990 Proceedings. International Conference on Wafer Scale Integration\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 Proceedings. International Conference on Wafer Scale Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWSI.1990.63897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 Proceedings. International Conference on Wafer Scale Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWSI.1990.63897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

许多用于实现晶圆级集成的容错技术也可用于构建灵活和可扩展的体系结构。这些技术应用于两种人工神经网络:具有反向传播的前馈模拟网络和有效的数字循环网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defect tolerant implementations of feed-forward and recurrent neural networks
Many of the defect tolerant techniques employed to achieve wafer-scale integration can also be used to construct flexible and scalable architectures. These techniques are applied to two artificial neural networks: a feed-forward analog network with backpropagation and an efficient digital recurrent network.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信