P. Franzon, D. van den Bout, J. Paulos, T. Miller, W. Snyder, T. Nagle, Wentai Liu
{"title":"前馈和递归神经网络的容错实现","authors":"P. Franzon, D. van den Bout, J. Paulos, T. Miller, W. Snyder, T. Nagle, Wentai Liu","doi":"10.1109/ICWSI.1990.63897","DOIUrl":null,"url":null,"abstract":"Many of the defect tolerant techniques employed to achieve wafer-scale integration can also be used to construct flexible and scalable architectures. These techniques are applied to two artificial neural networks: a feed-forward analog network with backpropagation and an efficient digital recurrent network.<<ETX>>","PeriodicalId":206140,"journal":{"name":"1990 Proceedings. International Conference on Wafer Scale Integration","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Defect tolerant implementations of feed-forward and recurrent neural networks\",\"authors\":\"P. Franzon, D. van den Bout, J. Paulos, T. Miller, W. Snyder, T. Nagle, Wentai Liu\",\"doi\":\"10.1109/ICWSI.1990.63897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many of the defect tolerant techniques employed to achieve wafer-scale integration can also be used to construct flexible and scalable architectures. These techniques are applied to two artificial neural networks: a feed-forward analog network with backpropagation and an efficient digital recurrent network.<<ETX>>\",\"PeriodicalId\":206140,\"journal\":{\"name\":\"1990 Proceedings. International Conference on Wafer Scale Integration\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 Proceedings. International Conference on Wafer Scale Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWSI.1990.63897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 Proceedings. International Conference on Wafer Scale Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWSI.1990.63897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Defect tolerant implementations of feed-forward and recurrent neural networks
Many of the defect tolerant techniques employed to achieve wafer-scale integration can also be used to construct flexible and scalable architectures. These techniques are applied to two artificial neural networks: a feed-forward analog network with backpropagation and an efficient digital recurrent network.<>