基于语音的协作分析是否可以跨任务上下文进行推广?

Samuel L. Pugh, A. Rao, Angela E. B. Stewart, S. D’Mello
{"title":"基于语音的协作分析是否可以跨任务上下文进行推广?","authors":"Samuel L. Pugh, A. Rao, Angela E. B. Stewart, S. D’Mello","doi":"10.1145/3506860.3506894","DOIUrl":null,"url":null,"abstract":"We investigated the generalizability of language-based analytics models across two collaborative problem solving (CPS) tasks: an educational physics game and a block programming challenge. We analyzed a dataset of 95 triads (N=285) who used videoconferencing to collaborate on both tasks for an hour. We trained supervised natural language processing classifiers on automatic speech recognition transcripts to predict the human-coded CPS facets (skills) of constructing shared knowledge, negotiation / coordination, and maintaining team function. We tested three methods for representing collaborative discourse: (1) deep transfer learning (using BERT), (2) n-grams (counts of words/phrases), and (3) word categories (using the Linguistic Inquiry Word Count [LIWC] dictionary). We found that the BERT and LIWC methods generalized across tasks with only a small degradation in performance (Transfer Ratio of .93 with 1 indicating perfect transfer), while the n-grams had limited generalizability (Transfer Ratio of .86), suggesting overfitting to task-specific language. We discuss the implications of our findings for deploying language-based collaboration analytics in authentic educational environments.","PeriodicalId":185465,"journal":{"name":"LAK22: 12th International Learning Analytics and Knowledge Conference","volume":"377 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Do Speech-Based Collaboration Analytics Generalize Across Task Contexts?\",\"authors\":\"Samuel L. Pugh, A. Rao, Angela E. B. Stewart, S. D’Mello\",\"doi\":\"10.1145/3506860.3506894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the generalizability of language-based analytics models across two collaborative problem solving (CPS) tasks: an educational physics game and a block programming challenge. We analyzed a dataset of 95 triads (N=285) who used videoconferencing to collaborate on both tasks for an hour. We trained supervised natural language processing classifiers on automatic speech recognition transcripts to predict the human-coded CPS facets (skills) of constructing shared knowledge, negotiation / coordination, and maintaining team function. We tested three methods for representing collaborative discourse: (1) deep transfer learning (using BERT), (2) n-grams (counts of words/phrases), and (3) word categories (using the Linguistic Inquiry Word Count [LIWC] dictionary). We found that the BERT and LIWC methods generalized across tasks with only a small degradation in performance (Transfer Ratio of .93 with 1 indicating perfect transfer), while the n-grams had limited generalizability (Transfer Ratio of .86), suggesting overfitting to task-specific language. We discuss the implications of our findings for deploying language-based collaboration analytics in authentic educational environments.\",\"PeriodicalId\":185465,\"journal\":{\"name\":\"LAK22: 12th International Learning Analytics and Knowledge Conference\",\"volume\":\"377 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LAK22: 12th International Learning Analytics and Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3506860.3506894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK22: 12th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3506860.3506894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们研究了基于语言的分析模型在两个协作问题解决(CPS)任务中的通用性:一个教育物理游戏和一个块编程挑战。我们分析了95个triads (N=285)的数据集,他们使用视频会议在一个小时内协作完成这两项任务。我们在自动语音识别转录本上训练有监督的自然语言处理分类器,以预测构建共享知识、谈判/协调和维护团队功能的人工编码CPS方面(技能)。我们测试了三种表示协作话语的方法:(1)深度迁移学习(使用BERT), (2) n-grams(单词/短语计数)和(3)词类(使用语言查询词计数[LIWC]词典)。我们发现BERT和LIWC方法在任务间泛化的性能下降很小(Transfer Ratio为0.93,1表示完全迁移),而n-gram的泛化能力有限(Transfer Ratio为0.86),表明对任务特定语言的过度拟合。我们讨论了在真实的教育环境中部署基于语言的协作分析的研究结果的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Do Speech-Based Collaboration Analytics Generalize Across Task Contexts?
We investigated the generalizability of language-based analytics models across two collaborative problem solving (CPS) tasks: an educational physics game and a block programming challenge. We analyzed a dataset of 95 triads (N=285) who used videoconferencing to collaborate on both tasks for an hour. We trained supervised natural language processing classifiers on automatic speech recognition transcripts to predict the human-coded CPS facets (skills) of constructing shared knowledge, negotiation / coordination, and maintaining team function. We tested three methods for representing collaborative discourse: (1) deep transfer learning (using BERT), (2) n-grams (counts of words/phrases), and (3) word categories (using the Linguistic Inquiry Word Count [LIWC] dictionary). We found that the BERT and LIWC methods generalized across tasks with only a small degradation in performance (Transfer Ratio of .93 with 1 indicating perfect transfer), while the n-grams had limited generalizability (Transfer Ratio of .86), suggesting overfitting to task-specific language. We discuss the implications of our findings for deploying language-based collaboration analytics in authentic educational environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信