Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, V. Ntinas, Stavros Kitsios, P. Bousoulas, Michail-Antisthenis I. Tsompanas, D. Tsoukalas, A. Adamatzky, G. Sirakoulis
{"title":"用于复杂化学波逻辑计算的基于忆阻器的振荡器:弗雷德金门范式","authors":"Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, V. Ntinas, Stavros Kitsios, P. Bousoulas, Michail-Antisthenis I. Tsompanas, D. Tsoukalas, A. Adamatzky, G. Sirakoulis","doi":"10.1109/LASCAS53948.2022.9789083","DOIUrl":null,"url":null,"abstract":"Concurrent computational machines have not provided in all cases ideal or even efficient implementations for a range of complex and computationally expensive problems. Thus, the utilization of unconventional computing systems, often inspired by biological processes, is widely investigated. One characteristic category of these systems is chemical computers that encode reactants' spatial concentrations as information and employ wave-fronts' propagation as means of computation. The most widely known and used reaction is the Belousov-Zhabotinsky ($BZ$) that perfectly demonstrates non-equilibrium thermodynamics. Motivated by these chemical computers and to further enhance their analysis, a digital-twin was developed and tested. Namely MemRC, a memristor based oscillator is presented here. The ability of the proposed electrical circuitry to mimic the computational abilities of a chemical system was demonstrated by the realization of Fredkin gate operations. The results of the electrical system are in good agreement with results from simulation of the chemical medium and from laboratory experiments. Furthermore an important advantage of the electrical system is the significant acceleration of the computations that can enable further testing of possible implementations.","PeriodicalId":356481,"journal":{"name":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Memristor-based Oscillator for Complex Chemical Wave Logic Computations: Fredkin Gate Paradigm\",\"authors\":\"Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, V. Ntinas, Stavros Kitsios, P. Bousoulas, Michail-Antisthenis I. Tsompanas, D. Tsoukalas, A. Adamatzky, G. Sirakoulis\",\"doi\":\"10.1109/LASCAS53948.2022.9789083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concurrent computational machines have not provided in all cases ideal or even efficient implementations for a range of complex and computationally expensive problems. Thus, the utilization of unconventional computing systems, often inspired by biological processes, is widely investigated. One characteristic category of these systems is chemical computers that encode reactants' spatial concentrations as information and employ wave-fronts' propagation as means of computation. The most widely known and used reaction is the Belousov-Zhabotinsky ($BZ$) that perfectly demonstrates non-equilibrium thermodynamics. Motivated by these chemical computers and to further enhance their analysis, a digital-twin was developed and tested. Namely MemRC, a memristor based oscillator is presented here. The ability of the proposed electrical circuitry to mimic the computational abilities of a chemical system was demonstrated by the realization of Fredkin gate operations. The results of the electrical system are in good agreement with results from simulation of the chemical medium and from laboratory experiments. Furthermore an important advantage of the electrical system is the significant acceleration of the computations that can enable further testing of possible implementations.\",\"PeriodicalId\":356481,\"journal\":{\"name\":\"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS53948.2022.9789083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS53948.2022.9789083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memristor-based Oscillator for Complex Chemical Wave Logic Computations: Fredkin Gate Paradigm
Concurrent computational machines have not provided in all cases ideal or even efficient implementations for a range of complex and computationally expensive problems. Thus, the utilization of unconventional computing systems, often inspired by biological processes, is widely investigated. One characteristic category of these systems is chemical computers that encode reactants' spatial concentrations as information and employ wave-fronts' propagation as means of computation. The most widely known and used reaction is the Belousov-Zhabotinsky ($BZ$) that perfectly demonstrates non-equilibrium thermodynamics. Motivated by these chemical computers and to further enhance their analysis, a digital-twin was developed and tested. Namely MemRC, a memristor based oscillator is presented here. The ability of the proposed electrical circuitry to mimic the computational abilities of a chemical system was demonstrated by the realization of Fredkin gate operations. The results of the electrical system are in good agreement with results from simulation of the chemical medium and from laboratory experiments. Furthermore an important advantage of the electrical system is the significant acceleration of the computations that can enable further testing of possible implementations.