一种新的深度神经网络随机乘法器

Subin Huh, Joonsang Yu, Kiyoung Choi
{"title":"一种新的深度神经网络随机乘法器","authors":"Subin Huh, Joonsang Yu, Kiyoung Choi","doi":"10.1109/ISOCC.2017.8368820","DOIUrl":null,"url":null,"abstract":"An XNOR gate is the most commonly used multiplier in bipolar encoded stochastic deep neural networks, but it is not suitable due to the inaccuracy in processing near-zero values. In this paper, we introduce a novel circuit that multiplies near-zero values more accurately and assess its performance with MNIST and CIFAR-10. For the CIFAR-10 dataset, the use of the proposed multipliers gives accuracy of 60.59%, improving by 11.64%p over the XNOR multiplier implementation.","PeriodicalId":248826,"journal":{"name":"2017 International SoC Design Conference (ISOCC)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new stochastic mutiplier for deep neural networks\",\"authors\":\"Subin Huh, Joonsang Yu, Kiyoung Choi\",\"doi\":\"10.1109/ISOCC.2017.8368820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An XNOR gate is the most commonly used multiplier in bipolar encoded stochastic deep neural networks, but it is not suitable due to the inaccuracy in processing near-zero values. In this paper, we introduce a novel circuit that multiplies near-zero values more accurately and assess its performance with MNIST and CIFAR-10. For the CIFAR-10 dataset, the use of the proposed multipliers gives accuracy of 60.59%, improving by 11.64%p over the XNOR multiplier implementation.\",\"PeriodicalId\":248826,\"journal\":{\"name\":\"2017 International SoC Design Conference (ISOCC)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC.2017.8368820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2017.8368820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

XNOR门是双极编码随机深度神经网络中最常用的乘法器,但由于对近零值的处理不准确而不适用。在本文中,我们介绍了一种新的电路,可以更准确地乘近零值,并使用MNIST和CIFAR-10评估其性能。对于CIFAR-10数据集,使用所提出的乘法器的准确率为60.59%,比XNOR乘法器的实现提高了11.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new stochastic mutiplier for deep neural networks
An XNOR gate is the most commonly used multiplier in bipolar encoded stochastic deep neural networks, but it is not suitable due to the inaccuracy in processing near-zero values. In this paper, we introduce a novel circuit that multiplies near-zero values more accurately and assess its performance with MNIST and CIFAR-10. For the CIFAR-10 dataset, the use of the proposed multipliers gives accuracy of 60.59%, improving by 11.64%p over the XNOR multiplier implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信