{"title":"丙戊酸诱导的抗惊厥作用、致畸性和肝毒性的鉴别。物种变异、药代动力学、代谢和结构特异性对开发替代抗癫痫药物如2-丙戊酸三角洲的影响。","authors":"H Nau, H Siemes","doi":"10.1007/BF01962697","DOIUrl":null,"url":null,"abstract":"<p><p>Valproate is metabolized into a large number of compounds via various metabolic routes. Metabolic profiles depend on species and age. Hepatotoxicity may be correlated with abnormal metabolism, especially in young age. Teratogenicity is associated with specific structural requirements: a free carboxyl atom connected to a carbon atom which also carries a hydrogen, and two carbon chains. This provides a clue for the development of alternative antiepileptic agents.</p>","PeriodicalId":19804,"journal":{"name":"Pharmaceutisch weekblad. Scientific edition","volume":"14 3A","pages":"101-7"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF01962697","citationCount":"13","resultStr":"{\"title\":\"Differentiation between valproate-induced anticonvulsant effect, teratogenicity and hepatotoxicity. Aspects of species variation, pharmacokinetics, metabolism and implications of structural specificity for the development of alternative antiepileptic agents such as delta 2-valproate.\",\"authors\":\"H Nau, H Siemes\",\"doi\":\"10.1007/BF01962697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Valproate is metabolized into a large number of compounds via various metabolic routes. Metabolic profiles depend on species and age. Hepatotoxicity may be correlated with abnormal metabolism, especially in young age. Teratogenicity is associated with specific structural requirements: a free carboxyl atom connected to a carbon atom which also carries a hydrogen, and two carbon chains. This provides a clue for the development of alternative antiepileptic agents.</p>\",\"PeriodicalId\":19804,\"journal\":{\"name\":\"Pharmaceutisch weekblad. Scientific edition\",\"volume\":\"14 3A\",\"pages\":\"101-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF01962697\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutisch weekblad. Scientific edition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF01962697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutisch weekblad. Scientific edition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF01962697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differentiation between valproate-induced anticonvulsant effect, teratogenicity and hepatotoxicity. Aspects of species variation, pharmacokinetics, metabolism and implications of structural specificity for the development of alternative antiepileptic agents such as delta 2-valproate.
Valproate is metabolized into a large number of compounds via various metabolic routes. Metabolic profiles depend on species and age. Hepatotoxicity may be correlated with abnormal metabolism, especially in young age. Teratogenicity is associated with specific structural requirements: a free carboxyl atom connected to a carbon atom which also carries a hydrogen, and two carbon chains. This provides a clue for the development of alternative antiepileptic agents.