基于Hurst指数的信道状态持续时间可预测性研究

Man Liu, Guochun Ren, Jin Chen, Guoru Ding, K. Guo
{"title":"基于Hurst指数的信道状态持续时间可预测性研究","authors":"Man Liu, Guochun Ren, Jin Chen, Guoru Ding, K. Guo","doi":"10.1109/ICCCHINA.2014.7008363","DOIUrl":null,"url":null,"abstract":"Spectrum prediction is one key enabling method for cognitive radio to improve spectrum utilization. Different from the traditional methods which predict the spectrum state slot-by-slot, in this paper we investigate the issue of prediction analysis of channel state duration (CSD). Specifically, we first introduce the concept of Hurst index to characterize the predictability between different scales of historical data and use the method of R/S (rescaled range) analysis the Hurst index of three different kinds of Large-Scale data and validate if we can obtain best prediction result from high predictability. Then, we introduce a pattern matching approach to validate the practical prediction performance. Furthermore, we focus on the predictability in small-scale data and find sometimes it performs even better than using large-scale data. Moreover, real world spectrum measurements are used to show that selecting historical data based on the predictability theory in this paper, we can smartly improve the predictive efficiency and enhance the prediction accuracy.","PeriodicalId":353402,"journal":{"name":"2014 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The predictability study of channel state duration based on Hurst index\",\"authors\":\"Man Liu, Guochun Ren, Jin Chen, Guoru Ding, K. Guo\",\"doi\":\"10.1109/ICCCHINA.2014.7008363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrum prediction is one key enabling method for cognitive radio to improve spectrum utilization. Different from the traditional methods which predict the spectrum state slot-by-slot, in this paper we investigate the issue of prediction analysis of channel state duration (CSD). Specifically, we first introduce the concept of Hurst index to characterize the predictability between different scales of historical data and use the method of R/S (rescaled range) analysis the Hurst index of three different kinds of Large-Scale data and validate if we can obtain best prediction result from high predictability. Then, we introduce a pattern matching approach to validate the practical prediction performance. Furthermore, we focus on the predictability in small-scale data and find sometimes it performs even better than using large-scale data. Moreover, real world spectrum measurements are used to show that selecting historical data based on the predictability theory in this paper, we can smartly improve the predictive efficiency and enhance the prediction accuracy.\",\"PeriodicalId\":353402,\"journal\":{\"name\":\"2014 IEEE/CIC International Conference on Communications in China (ICCC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/CIC International Conference on Communications in China (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCHINA.2014.7008363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCHINA.2014.7008363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

频谱预测是认知无线电提高频谱利用率的关键实现方法之一。与传统的逐点预测频谱状态的方法不同,本文研究了信道状态持续时间(CSD)的预测分析问题。具体而言,我们首先引入Hurst指数的概念来表征不同尺度历史数据之间的可预测性,并使用R/S(重标量程)方法对三种不同类型大尺度数据的Hurst指数进行分析,验证是否可以在高可预测性的情况下获得最佳预测结果。然后,我们引入了一种模式匹配方法来验证实际的预测性能。此外,我们关注小规模数据的可预测性,并发现有时它比使用大规模数据表现得更好。此外,实际频谱测量结果表明,基于可预测性理论选择历史数据,可以很好地提高预测效率和预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The predictability study of channel state duration based on Hurst index
Spectrum prediction is one key enabling method for cognitive radio to improve spectrum utilization. Different from the traditional methods which predict the spectrum state slot-by-slot, in this paper we investigate the issue of prediction analysis of channel state duration (CSD). Specifically, we first introduce the concept of Hurst index to characterize the predictability between different scales of historical data and use the method of R/S (rescaled range) analysis the Hurst index of three different kinds of Large-Scale data and validate if we can obtain best prediction result from high predictability. Then, we introduce a pattern matching approach to validate the practical prediction performance. Furthermore, we focus on the predictability in small-scale data and find sometimes it performs even better than using large-scale data. Moreover, real world spectrum measurements are used to show that selecting historical data based on the predictability theory in this paper, we can smartly improve the predictive efficiency and enhance the prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信